On prouve un théorème de structure pour les boules de Carnot-Carathéodory définies par des champs de vecteurs lipschitziens. Une inégalité de Poincaré est aussi démontrée.
We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.
@article{AIF_2004__54_2_431_0, author = {Montanari, Annamaria and Morbidelli, Daniele}, title = {Balls defined by nonsmooth vector fields and the Poincar\'e inequality}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {431-452}, doi = {10.5802/aif.2024}, zbl = {1069.46504}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_2_431_0} }
Montanari, Annamaria; Morbidelli, Daniele. Balls defined by nonsmooth vector fields and the Poincaré inequality. Annales de l'Institut Fourier, Tome 54 (2004) pp. 431-452. doi : 10.5802/aif.2024. http://gdmltest.u-ga.fr/item/AIF_2004__54_2_431_0/
[1] Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math, Tome 188 (2002), pp. 87-128 | MR 1947459 | Zbl 1030.35084
[2] Strong solutions for the Levi curvature equation, Adv. in Diff. Eq, Tome 5 (2000) no. 1-3, pp. 323-342 | MR 1734545 | Zbl 1211.35112 | Zbl 01700721
[3] Nonlinear functional analysis, Springer-Verlag, Berlin (1985) | MR 787404 | Zbl 0559.47040
[4] Measure theory and fine properties of functions, CRC Press, Studies in Advanced Mathematics (1992) | MR 1158660 | Zbl 0804.28001
[5] Subelliptic eigenvalue problems, Conference on Harmonic Analysis in honor of Antoni Zygmund, Wadsworth, Belmont, Calif (Wadsworth Mathematical Series) (1983), pp. 590-606 | MR 730094 | Zbl 0503.35071
[6] Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Conference on Linear Partial and Pseudodifferential Operators (Rend. Sem. Mat. Univ. Politec. Torino) Tome (special issue) (1984), pp. 105-114 | MR 745979 | Zbl 0553.35033
[7] Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Tome 4 (1983) no. 10, pp. 523-541 | Numdam | MR 753153 | Zbl 0552.35032
[8] A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices, Tome 1 (1996), pp. 1-14 | MR 1383947 | Zbl 0856.43006
[9] Approximation and Imbedding Theorems for Weighted Sobolev Spaces Associated with Lipschitz Continuous Vector Fields, Boll. Un. Mat. Ital. (7), Tome B11 (1997) no. 1, pp. 83-117 | MR 1448000 | Zbl 0952.49010
[10] Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math, Tome 49 (1996), pp. 1081-1144 | MR 1404326 | Zbl 0880.35032
[11] Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math, Tome 74 (1998), pp. 67-97 | MR 1631642 | Zbl 0906.46026
[12] Sobolev met Poincaré, Mem. Amer. Math. Soc, Tome 688 (2000) | MR 1683160 | Zbl 0954.46022
[13] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J, Tome 53 (1986), pp. 503-523 | MR 850547 | Zbl 0614.35066
[14] Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi Matematica, Università di Bologna (A.A 1982-83)
[15] On the Poincaré inequality for vector fields, Ark. Mat, Tome 38 (2000), pp. 327-342 | MR 1785405 | Zbl 02062433
[16] Analyse sur le boules d'un opérateur sous-elliptique, Math. Ann, Tome 303 (1995), pp. 713-746 | MR 1359957 | Zbl 0836.35106
[17] Sobolev and Morrey estimates for non-smooth Vector Fields of step two, Z. Anal. Anwendungen, Tome 21 (2002) no. 1, pp. 135-157 | MR 1916408 | Zbl 1032.46051
[18] Fractional Sobolev norms and structure of the Carnot--Carathéodory balls for Hörmander vector fields, Studia Math, Tome 139 (2000), pp. 213-244 | MR 1762582 | Zbl 0981.46034
[19] Balls and metrics defined by vector fields I: Basic properties, Acta Math, Tome 155 (1985), pp. 103-147 | MR 793239 | Zbl 0578.32044
[20] Set--valued differential and a nonsmooth version of Chow's theorem, Proceedings of the 40th IEEE Conference on Decision and Control; Orlando, Florida (2001)
[21] A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices, Tome 2 (1992), pp. 27-38 | MR 1150597 | Zbl 0769.58054
[22] Analysis and geometry on groups, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 100 (1992) | MR 1218884 | Zbl 0813.22003