Soit un espace hermitien symétrique non compact irréductible. On étudie un système invariant d’opérateurs differentiels sur . Selon un théorème de K. Johnson et A. Korányi, une fonction sur un espace hermitien symétrique de type tube est annulée par le système de Hua si et seulement si elle est l’intégrale de Poisson-Szegö d’une hyperfonction. N. Berline et M. Vergne ont posé la question de caractériser les fonctions - harmoniques sur les espaces hermitiens de type II. Ici on montre que ce sont les fonctions pluriharmoniques.
Let be an irreducible Hermitian symmetric space of noncompact type. We study a - invariant system of differential operators on called the Hua system. It was proved by K. Johnson and A. Korányi that if is a Hermitian symmetric space of tube type, then the space of Poisson-Szegö integrals is precisely the space of zeros of the Hua system. N. Berline and M. Vergne raised the question about the nature of the common solutions of the Hua system for Hermitian symmetric spaces of nontube type. In this paper we show that these are exactly the pluriharmonic functions.
@article{AIF_2004__54_1_81_0, author = {Buraczewski, Dariusz}, title = {The Hua system on irreducible Hermitian symmetric spaces of nontube type}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {81-127}, doi = {10.5802/aif.2011}, mrnumber = {2069122}, zbl = {1065.32017}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_1_81_0} }
Buraczewski, Dariusz. The Hua system on irreducible Hermitian symmetric spaces of nontube type. Annales de l'Institut Fourier, Tome 54 (2004) pp. 81-127. doi : 10.5802/aif.2011. http://gdmltest.u-ga.fr/item/AIF_2004__54_1_81_0/
[BBDHPT] Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II, Journal of Functional Analysis, Tome 188 (2002), pp. 38-74 | MR 1878631 | Zbl 0999.31005
[BDH] Bounded pluriharmonic functions on symmetric irreducible Siegel domains, Mathematische Zeitschrift, Tome 240 (2002), pp. 169-195 | MR 1906712 | Zbl 1008.32013
[BV] Equations de Hua et noyau de Poisson, Springer-Verlag (Lecture Notes in Math.) Tome 880 (1981), pp. 1-51 | MR 644825 | Zbl 0521.32024
[DH] Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math, Tome 411 (1990), pp. 1-38 | MR 1072971 | Zbl 0699.22012
[DHMP] \newblock Pluriharmonic functions on symmetric irreducible Siegel domains, Geom. and Funct. Anal, Tome 10 (2000), pp. 1090-1117 | MR 1792830 | Zbl 0969.31007
[DHP] Hua operators on bounded homogeneous domains in and alternative reproducing kernels for holomorphic functions, Journal of Functional Analysis, Tome 151 (1997) no. 1, pp. 77-120 | MR 1487771 | Zbl 0887.43005
[FK] Analysis On Symmetric Cones, Clarendon Press, Oxford (1994) | MR 1446489 | Zbl 0841.43002
[H1] Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1962) | MR 514561 | Zbl 0451.53038
[H2] Groups and Geometric Analysis, Academic Press, Orlando (1984) | MR 754767 | Zbl 0543.58001
[H3] Geometric Analysis on Symmetric Spaces, American Mathematical Society, Providence (1994) | MR 1280714 | Zbl 0809.53057
[HC] Discrete series for semisimple Lie groups II, Acta Math, Tome 116 (1966), pp. 1-111 | MR 219666 | Zbl 0199.20102
[Hua] Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking (1958), Amer. Math. Soc. Transl. (Math. Monograph) (1963) | MR 171936 | Zbl 0507.32025
[J1] Remarks on the theorem of Korányi and Malliavin on the Siegel upper half-plane of rank two, Proc. Amer. Math. Soc, Tome 67 (1977), pp. 351-356 | MR 476918 | Zbl 0395.22012
[J2] Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane, Arkiv for Matematik, Tome 16 (1978), pp. 95-108 | MR 499140 | Zbl 0395.22013
[JK] The Hua operators on bounded symmetric domains of tube type, Annals of Math, Tome 111 (1980) no. 2, pp. 589-608 | MR 577139 | Zbl 0468.32007
[K] Analysis and Geometry on Complex Homogeneous Domains, chapter Function Spaces on Bounded Symmetric Domains, Birkhäuser, Boston--Basel--Berlin (2000), pp. 183-281 | MR 1727259 | Zbl 0958.32022
[KM] Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two, Acta Math, Tome 134 (1975), pp. 185-209 | MR 410278 | Zbl 0318.60066
[Kn] Lie Groups Beyond an Introduction, Birkhäuser, Boston--Basel--Berlin (1996) | MR 1399083 | Zbl 0862.22006
[KV] Rational inner functions on bounded symmetric domains, Trans. A. M. S, Tome 254 (1979), pp. 179-193 | MR 539914 | Zbl 0439.32006
[KW] Realization of Hermitian symmetric spaces as generalized half-planes, Annals of Math, Tome 81 (1965) no. 2, pp. 265-288 | MR 174787 | Zbl 0137.27402
[L] Les équations de Hua d'un domaine borné symétrique de tube type, Invent. Math, Tome 77 (1984), pp. 129-161 | MR 751135 | Zbl 0582.32042
[R] Fonctions harmoniques sur les groupes localement compact à base dénombrable, Bull. Soc. Math. France, Mémoire, Tome 54 (1977), pp. 5-118 | Numdam | MR 517392 | Zbl 0389.60003
[S] Algebraic structures of symmetric domains, Iwanami-Shoten and Princeton Univ. Press (1980) | MR 591460 | Zbl 0483.32017
[T] Harmonic Analysis on the Heisenberg Group, Birkhäuser, Boston--Basel--Berlin (1998) | MR 1633042 | Zbl 0892.43001