Nous démontrons l'unicité des résolutions crépantes pour certaines singularités quotient et pour certaines adhérences d'orbites nilpotentes. La finitude des résolutions symplectiques non-isomorphes pour les singularités symplectiques de dimension 4 est démontrée. Nous construisons aussi un exemple d'une singularité symplectique qui admet deux résolutions symplectiques non-équivalentes.
We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.
@article{AIF_2004__54_1_1_0, author = {Fu, Baohua and Namikawa, Yoshinori}, title = {Uniqueness of crepant resolutions and symplectic singularities}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {1-19}, doi = {10.5802/aif.2008}, mrnumber = {2069119}, zbl = {1063.14018}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_1_1_0} }
Fu, Baohua; Namikawa, Yoshinori. Uniqueness of crepant resolutions and symplectic singularities. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1-19. doi : 10.5802/aif.2008. http://gdmltest.u-ga.fr/item/AIF_2004__54_1_1_0/
[Bea] Symplectic singularities, Invent. Math, Tome 139 (2000), pp. 541-549 | MR 1738060 | Zbl 0958.14001
[CMS] Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997), Math. Soc. Japan, Tokyo (Adv. Stud. Pure Math) Tome 35 (2002), pp. 1-88 | MR 1929792 | Zbl 1063.14065
[Deb] Higher-Dimensional Algebraic Geometry, Springer Verlag, Universitext (2001) | MR 1841091 | Zbl 0978.14001
[Fu1] Symplectic resolutions for nilpotent orbits, Invent. Math, Tome 151 (2003), pp. 167-186 | MR 1943745 | Zbl 1072.14058 | Zbl 01965461
[Fu2] Symplectic resolutions for nilpotent orbits (II), C. R. Math. Acad. Sci. Paris, Tome 336 (2003), pp. 277-281 | MR 2009121 | Zbl 1073.14547 | Zbl 01986162
[Fuj] On primitively symplectic compact Kähler -manifolds of dimension four, Classification of algebraic and analytic manifolds (Katata, 1982), Birkhäuser, Boston (Progr. Math.) Tome 39 (1983), pp. 71-250 | MR 728609 | Zbl 0549.32018
[Got] On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991), World Sci. Publishing, River Edge, NJ (Adv. Ser. Math. Phys.) Tome 16 (1991), pp. 317-338 | MR 1187554 | Zbl 0924.53023
[Hes] Polarizations in the classical groups, Math. Z, Tome 160 (1978), pp. 217-234 | MR 480765 | Zbl 0364.20048
[Huy] Compact hyper-Kähler manifolds: basic results, Invent. Math, Tome 135 (1999), pp. 63-113 | MR 1664696 | Zbl 0953.53031
[Ka1] Dynkin diagrams and crepant resolutions of quotient singularities (e-print. To appear in Selecta Math, math.AG/9903157)
[Ka2] McKay correspondence for symplectic quotient singularities, Invent. Math, Tome 148 (2002), pp. 151-175 | MR 1892847 | Zbl 1060.14020
[Ka3] Symplectic resolutions: deformations and birational maps (e-print, math.AG/0012008)
[KM] The number of the minimal models for a 3-fold of general type is finite, Math. Ann., Tome 276 (1987), pp. 595-598 | MR 879538 | Zbl 0596.14031
[KP] On the geometry of conjugacy classes in classical groups, Comment. Math. Helv, Tome 57 (1982), pp. 539-602 | MR 694606 | Zbl 0511.14023
[Mat] Termination of flops for 4-folds, Amer. J. Math, Tome 113 (1991), pp. 835-859 | MR 1129294 | Zbl 0746.14017
[Na1] Deformation theory of singular symplectic -folds, Math. Ann, Tome 319 (2001), pp. 597-623 | MR 1819886 | Zbl 0989.53055
[Na2] Mukai flops and derived categories II (e-print, math.AG/0305086) | MR 2096144
[Sho] Prelimiting flips, Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry (Tr. Mat. Inst. Steklova) Tome 240 (2003), pp. 82-219 | MR 1993750 | Zbl 1082.14019
[Wi1] Contractions of symplectic varieties, J. Algebraic Geom, Tome 12 (2003), pp. 507-534 | MR 1966025 | Zbl 02064089
[Wi2] Symplectic Singularities (2000) (Ph. D. thesis, Trinity College, Cambridge University)
[WW] Small contractions of symplectic 4-folds, Duke Math. J., Tome 120 (2003) no. math. AG/0201028, pp. 65-95 | MR 2010734 | Zbl 1036.14007