On résoud le problème de Serre pour des fibrés dont les fibres sont des domaines de Reinhardt hyperboliques pseudoconvexes de dimension deux.
The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.
@article{AIF_2004__54_1_129_0, author = {Pflug, Peter and Zwonek, Wlodzimierz}, title = {The Serre problem with Reinhardt fibers}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {129-146}, doi = {10.5802/aif.2012}, mrnumber = {2069123}, zbl = {1080.32016}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_1_129_0} }
Pflug, Peter; Zwonek, Wlodzimierz. The Serre problem with Reinhardt fibers. Annales de l'Institut Fourier, Tome 54 (2004) pp. 129-146. doi : 10.5802/aif.2012. http://gdmltest.u-ga.fr/item/AIF_2004__54_1_129_0/
[Car] Sur les transformations analytiques des domaines cerclés et semicerclés bornés, Math. Ann, Tome 106 (1932), pp. 540-573 | JFM 58.0350.02 | MR 1512773 | Zbl 0004.22002
[Coe-Loeb] A counterexample to the Serre problem with a bounded domain in as fiber, Ann. Math., Tome 122 (1985), pp. 329-334 | MR 808221 | Zbl 0585.32030
[Dem] Un exemple de fibré holomorphe non de Stein à fibré ayant pour base le disque ou le plan, Invent. Math., Tome 48 (1978), pp. 293-302 | MR 508989 | Zbl 0372.32012
[Hir] Domains de Stein et fonctions holomorphes bornées, Math. Ann, Tome 213 (1975), pp. 185-193 | MR 393563 | Zbl 0284.32011
[Isa-Kra] Domains with non-compact automorphism group: a survey, Adv. Math., Tome 146 (1999), pp. 1-38 | MR 1706680 | Zbl 1040.32019
[Kön] Über die Holomorphie-Vollständigkeit lokaltrivialer Faserräume, Math. Ann, Tome 189 (1970), pp. 178-184 | MR 268410 | Zbl 0203.39001
[Kru] Holomorphic automorphism of hyperbolic Reinhardt domains, Math. USSR Izv, Tome 32 (1989) no. 1, pp. 15-38 | MR 936521 | Zbl 0663.32019
[Loeb] Un nouveau contre-exemple a une conjecture de Serre (1984) (Publ. IRMA Lille, 6(4))
[Mok] The Serre problem on Riemann surfaces, Math. Ann, Tome 258 (1981), pp. 145-168 | MR 641821 | Zbl 0497.32013
[Nar] Several complex variables, The University of Chicago Press, Chicago-London, Chicago Lectures in Mathematics (1971) | MR 342725 | Zbl 0223.32001
[Pfl] About the Carathéodory completeness of all Reinhardt domains, Functional Analysis, Holomorphy and Approximation Theory II, North-Holland, Amsterdam (1984), pp. 331-337 | MR 771335 | Zbl 0536.32001
[Shi] Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J., Tome 40 (1988) no. 1, pp. 119-152 | MR 927081 | Zbl 0646.32003
[Sib] Fibrés holomorphes et métrique de Carathéodory, C. R. Acad. Sc. Paris, Tome 279 (1974), pp. 261-264 | MR 352550 | Zbl 0318.32029
[Siu] Holomorphic fiber bundles whose fibers are bounded Stein domains with first Betti number, Math. Ann, Tome 219 (1976), pp. 171-192 | MR 390303 | Zbl 0318.32010
[Sko] Fibrés holomorphes à base fibre de Stein, Invent. Math, Tome 43 (1977), pp. 97-107 | MR 508091 | Zbl 0365.32018
[Ste] Fonctions plurisousharmoniques et convexité holomorphe de certaines fibrés analytiques, Séminaire Pierre Lelong (Analyse, 1973/1974), Springer, Berlin (Lecture Notes in Mathematics) Tome 474 (1975), pp. 155-179 | MR 399524 | Zbl 0309.32011
[Zaf] Serre problem and Inoue-Hirzebruch surfaces, Math. Ann, Tome 319 (2001) no. 2, pp. 395-420 | MR 1815117 | Zbl 0978.32008
[Zwo1] On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math, Tome 72 (1999) no. 4, pp. 304-314 | MR 1678013 | Zbl 0938.32003
[Zwo2] Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math, Tome 388 (2000), pp. 1-103 | MR 1785672 | Zbl 0965.32004