Il est connu que les générateurs de l’idéal annulateur d’une variété torique projective de dimension , plongée par les sections globales d’un fibré en droites normalement engendré, sont de degré au plus . Nous caractérisons les variétés projectives de dimension dont un générateur au moins de l’idéal annulateur doit être de degré .
It is known that generators of ideals defining projective toric varieties of dimension embedded by global sections of normally generated line bundles have degree at most . We characterize projective toric varieties of dimension whose defining ideals must have elements of degree as generators.
@article{AIF_2003__53_7_2243_0, author = {Ogata, Shoetsu}, title = {On projective toric varieties whose defining ideals have minimal generators of the highest degree}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {2243-2255}, doi = {10.5802/aif.2005}, mrnumber = {2044172}, zbl = {1069.14057}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_7_2243_0} }
Ogata, Shoetsu. On projective toric varieties whose defining ideals have minimal generators of the highest degree. Annales de l'Institut Fourier, Tome 53 (2003) pp. 2243-2255. doi : 10.5802/aif.2005. http://gdmltest.u-ga.fr/item/AIF_2003__53_7_2243_0/
[A] On the study of integral convex polytopes and toric varieties (2002) (Master thesis, Tohoku University (Japanese))
[BGT] Normal polytopes, triangulations, and Koszul algebras, J. reine angew. Math, Tome 485 (1997), pp. 123-160 | MR 1442191 | Zbl 0866.20050
[ES] Binomial ideals, Duke Math. J, Tome 84 (1996), pp. 1-45 | Article | MR 1394747 | Zbl 0873.13021
[EW] On the ampleness of invertible sheaves in complete projective toric varieties, Results in Mathematics, Tome 19 (1991), pp. 275-278 | MR 1100674 | Zbl 0739.14031
[Fj] Defining Equations for Certain Types of Polarized Varieties, Complex Analysis and Algebraic Geometry, Iwanami and Cambridge Univ. Press (1977), pp. 165-173 | Zbl 0353.14011
[Fl] Introduction to Toric Varieties, Princeton Univ. Press, Ann. of Math. Studies, Tome No 131 (1993) | MR 1234037 | Zbl 0813.14039
[GL] A simple proof of Petri's Theorem on canonical curves, Geometry of Today, Giornate di Geometria (Roma, 1984), Birkhäuser, Boston, Tome vol. 60 (1985), pp. 129-142 | Zbl 0577.14018
[I] Commutative rings, Iwanami Shoten, Tokyo, Kiso Sugaku Algebra (Japanese), Tome vol. 4 (1977) | MR 569688
[K1] The number of moduli of families of curves on toric surfaces (1991) (thesis, Katholieke Universiteit te Nijmengen)
[K2] Generators for the ideal of a projectively embedded toric surfaces, Tohoku Math. J, Tome 45 (1993), pp. 385-392 | Article | MR 1231563 | Zbl 0809.14042
[K3] A criterion for the ideal of a projectively embedded toric surfaces to be generated by quadrics, Beiträger zur Algebra und Geometrie, Tome 34 (1993), pp. 57-62 | MR 1239278 | Zbl 0781.14025
[M] Varieties defined by quadric equations, Questions on Algebraic Varieties (Corso CIME) (1969), pp. 30-100 | Zbl 0198.25801
[NO] On generators of ideals defining projective toric varieties, Manuscripta Math, Tome 108 (2002), pp. 33-42 | Article | MR 1912946 | Zbl 0997.14014
[Od] Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Ergebnisse der Math, Tome 15 (1988) | MR 922894 | Zbl 0628.52002
[Og] Quadratic generation of ideals defining projective toric varieties, Kodai Math. J, Tome 26 (2003), pp. 137-146 | Article | MR 1993670 | Zbl 02076054
[S1] Gröbner bases and Convex Polytopes, American Mathematics Society, Providence, RI, University Lecture Series, Tome Vol. 8 (1995) | MR 1363949 | Zbl 0856.13020
[S2] Equations defining toric varieties, Algebraic Geometry (Santa Cruz, 1995) (Proc. Sympos. Pure Math) Tome 62 (1997), pp. 437-449 | Zbl 0914.14022