Nous introduisons une structure squelette dans , qui consiste en un ensemble stratifié de Whitney de dimension sur lequel est défini un “champ radial de vecteurs” multiformes . C’est une extension de la notion du “Blum medial axis” d’une région dans avec un bord lisse générique. Puis, pour de telles structures squelettes, on peut définir “un bord associé” . Nous introduisons des invariants géométriques du champ radial de vecteurs et un “flot radial” de à . Ils nous permettent d’obtenir des conditions numériques suffisantes pour que le bord soit lisse, et de déterminer sa géométrie. Nous établissons en même temps l’existence d’un voisinage tubulaire d’un tel ensemble stratifié de Whitney.
We introduce a skeletal structure in , which is an - dimensional Whitney stratified set on which is defined a multivalued “radial vector field” . This is an extension of notion of the Blum medial axis of a region in with generic smooth boundary. For such a skeletal structure there is defined an “associated boundary” . We introduce geometric invariants of the radial vector field on and a “radial flow” from to . Together these allow us to provide sufficient numerical conditions for the smoothness of the boundary as well as allowing us to determine its geometry. In the course of the proof, we establish the existence of a tubular neighborhood for such a Whitney stratified set.
@article{AIF_2003__53_6_1941_0, author = {Damon, James}, title = {Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1941-1985}, doi = {10.5802/aif.1997}, mrnumber = {2038785}, zbl = {1047.57014}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1941_0} }
Damon, James. Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1941-1985. doi : 10.5802/aif.1997. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1941_0/
[BA] Smoothed Local Symmetries and their Implementation, Intern. J. Robotics Research, Tome 3 (1984), pp. 36-61 | Article
[BG] Growth, motion, and 1-parameter families of symmetry sets, Proc. Royal Soc. Edinburgh, Tome 104A (1986), pp. 179-204 | Article | MR 877901 | Zbl 0656.58022
[BGG] Symmetry sets, Proc. Royal Soc. Edinburgh, Tome 101A (1983), pp. 163-186 | MR 824218 | Zbl 0593.58012
[BGT] Ridges, crests, and subparabolic lines of evolving surfaces, Int. J. Comp. Vision, Tome 18 (1996) no. 3, pp. 195-210 | Article
[BN] Shape description using weighted symmetric axis features, Pattern Recognition, Tome 10 (1978), pp. 167-180 | Article | Zbl 0379.68067
[Brz] Singularities of the maximum of a function that depends on the parameters, Funct. Anal. Appl, Tome 11 (1977), pp. 49-51 | Article | MR 482807 | Zbl 0369.58010
[D1] Smoothness and Geometry of Boundaries Associated to Skeletal Structures II : Geometry in the Blum Case (to appear in Compositio Math) | MR 2098407 | Zbl 1071.57022
[D2] Determining the Geometry of Boundaries of Objects from Medical Data (submitted)
[Gb] Symmetry Sets and Medial Axes in Two and Three Dimensions, The Mathematics of Surfaces, Springer-Verlag (2000), pp. 306-321 | Zbl 0979.53004
[GG] Stable Mappings and their Singularities, Springer, Graduate Texts in Math. (1974) | MR 341518 | Zbl 0294.58004
[Gi] Topological stability of smooth mappings, Springer, Lecture Notes in Math., Tome 552 (1976) | MR 436203 | Zbl 0377.58006
[Go] Triangulation of Stratified Objects, Proc. Amer. Math. Soc., Tome 72 (1978), pp. 193-200 | Article | MR 500991 | Zbl 0392.57001
[Hi] Differential Topology, Springer, Graduate Texts in Mathematics (1976) | MR 448362 | Zbl 0356.57001
[KTZ] Toward a computational theory of shape: An overview, Three Dimensional Computer Vision, MIT Press (1990)
[Le] A Process Grammar for Shape, Art. Intelligence, Tome 34 (1988), pp. 213-247 | Article
[M1] Stratifications and mappings, Dynamical Systems, Academic Press, New York (1973) | Zbl 0286.58003
[M2] Distance from a manifold in Euclidean space, Proc. Symp. Pure Math., Tome 40 (1983) no. 2, pp. 199-216 | MR 713249 | Zbl 0519.58015
[Mu] Elementary Differential Topology, Princeton University Press, Annals Math. Studies, Tome 54 (1961) | MR 163320 | Zbl 0107.17201
[P1] Deformable -reps for 3D Medical Image Segmentation (to appear), Int. J. Comp. Vision, Tome 55 (2003) no. 2-3
[P2] Segmentation, Registration, and Shape Measurement of Variation via Image Object Shape, IEEE Trans. Med. Imaging, Tome 18 (1999), pp. 851-865 | Article
[P3] Multiscale Medial Loci and Their Properties (to appear), Int. J. Comp. Vision, Tome 55 (2003) no. 2-3
[SB] The Hamilton-Jacobi Skeleton, Int. J. Comp. Vision, Tome 48 (2002), pp. 215-231 | Article | Zbl 1012.68757
[SN] Calculating 3d Voronoi diagrams of large unrestricted point sets for skeleton generation of complex 3d shapes, Proc. 2nd Int. Workshop on Visual Form, World Scientific Publ. (1994), pp. 532-541
[V] Stratified Mappings-Structure and Triangulability, Springer, Lecture Notes, Tome 1102 (1984) | MR 771120 | Zbl 0543.57002
[Y] On the local structure of the generic central set, Comp. Math., Tome 43 (1981), pp. 225-238 | Numdam | MR 622449 | Zbl 0465.58008