Deux types de courbures sont associés à un sous-ensemble compact et définissable d'une variété riemannienne analytique réelle. Si la variété est de courbure constante, il y a des relations linéaires entre ces mesures. Comme application, nous démontrons une formule cinématique, définissons des densités locales, et nous étudions les volumes des simplexes réguliers.
Two types of curvatures are associated to a compact, definable subset of a real analytic Riemannian manifold. If the manifold has constant curvature, there are some linear relations between these measures. As application, a kinematic formula is proved, local densities are defined and volumes of regular simplexes are studied.
@article{AIF_2003__53_6_1897_0, author = {Bernig, Andreas and Br\"ocker, Ludwig}, title = {Courbures intrins\`eques dans les cat\'egories analytico-g\'eom\'etriques}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1897-1924}, doi = {10.5802/aif.1995}, mrnumber = {2038783}, zbl = {1053.53053}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1897_0} }
Bernig, Andreas; Bröcker, Ludwig. Courbures intrinsèques dans les catégories analytico-géométriques. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1897-1924. doi : 10.5802/aif.1995. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1897_0/
[1] On metrics properties of stratified sets, Manuscripta Math, Tome 111 (2003), pp. 71-95 | Article | MR 1981597 | Zbl 1033.58005
[2] Scalar Curvature of definable Alexandrov spaces, Advances in Geometry, Tome 2 (2002), pp. 29-55 | Article | MR 1880000 | Zbl 1027.53041
[3] Scalar Curvature of definable CAT spaces, Advances in Geometry, Tome 3 (2003), pp. 23-43 | Article | MR 1956586 | Zbl 1028.53031
[4] Lipschitz-Killing invariants, Mathematische Nachrichten, Tome 245 (2002), pp. 5-25 | Article | MR 1936341 | Zbl 1074.53064
[5] Géométrie Algébrique Réelle, Springer-Verlag (1987) | MR 949442 | Zbl 0633.14016
[6] Metric Spaces of Non-Positive Curvature, Springer-Verlag (1999) | MR 1744486 | Zbl 0988.53001
[7] Integral geometry of tame sets, Geom. Dedicata, Tome 82 (2000), pp. 285-323 | Article | MR 1789065 | Zbl 1023.53057
[8] On the curvature of piecewise flat spaces, Comm. Math. Phys, Tome 92 (1984), pp. 405-454 | Article | MR 734226 | Zbl 0559.53028
[9] Kinematic and tube formulas for piecewise flat spaces, Indiana Univ. Math. I, Tome 35 (1986), pp. 737-754 | Article | MR 865426 | Zbl 0615.53058
[10] Équisingularité réelle : invariants locaux et conditions de régularité (2001) (preprint Université de Nice)
[11] Tame Geometry with Applications in Smooth Analysis (livre à paraître) | Zbl 1076.14079
[12] An introduction to o-minimal geometry (2000) (Universitá di Pisa, Dipartimento di Matematica)
[13] Geometric Measure Theory, Springer Verlag, Berlin-Heidelberg-New York (1968) | MR 257325 | Zbl 0176.00801
[14] About geodesic distance on Riemannian stratified spaces (1997) (preprint)
[15] Curvature measures of subanalytic sets, Amer. J. Math, Tome 116 (1994), pp. 819-880 | Article | MR 1287941 | Zbl 0818.53091
[16] Kinematic formulas in integral geometry, Indiana Univ. Math. J, Tome 39 (1990), pp. 1115-1154 | Article | MR 1087187 | Zbl 0703.53059
[17] Monge-Ampère functions I, Indiana Univ. Math. J, Tome 38 (1989), pp. 745-771 | Article | MR 1017333 | Zbl 0668.49010
[18] Stratified Morse Theory, Springer Verlag, Berlin-Heidelberg (1988) | MR 932724 | Zbl 0639.14012
[19] On stratified Morse theory, Topology, Tome 38 (1999), pp. 427-438 | Article | MR 1660321 | Zbl 0936.58007
[20] Sheaves on Manifolds, Springer Verlag, Berlin-Heidelberg-New York (1990) | MR 1074006 | Zbl 0709.18001
[21] Integralgeometrie Whitney-Stratifizierter Mengen, Dissertation Münster (1999) | Zbl 0946.53041
[22] Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Tome 39 (1989) no. 3, pp. 753-771 | Article | Numdam | MR 1030848 | Zbl 0673.32015
[23] Tame Topology and O-Minimal Structures, Cambridge University Press, London Math. Soc. Lecture Notes Ser, Tome 248 (1998) | MR 1633348 | Zbl 0953.03045
[24] Geometric Categories and o-minimal structures, Duke Math. Journal, Tome 84 (1996), pp. 497-540 | Article | MR 1404337 | Zbl 0889.03025
[25] Introduction to Integral Geometry, Publications de l'Institut Mathématique de l'Université de Nanc, Paris (1953) | MR 60840 | Zbl 0052.39403
[26] Topology of singular spaces and constructible sheaves (, www.math.uni-hamburg.de/home/schuermann) | Zbl 1041.55001
[27] Differentialgeometrie und Faserbündel, Birkhäuser Verlag, Basel-Stuttgart (1972) | MR 413153 | Zbl 0271.53035 | Zbl 0327.53020
[28] Espaces stratifiés réels, Stratifications, singularities and differential equations (travaux en cours), Tome 55 (1997), pp. 93-107 | Zbl 0883.32025
[29] On the volume of tubes, Amer. J. Math, Tome 61 (1939), pp. 461-472 | Article | JFM 65.0796.01 | MR 1507388
[30] Curvature and currents for unions of sets with positive reach, Geom. Dedicata, Tome 23 (1987), pp. 155-171 | MR 892398 | Zbl 0627.53053
[31] Approximation and characterization of generalized Lipschitz-Killing curvatures, Ann. Global Anal. Geom, Tome 8 (1990), pp. 249-260 | Article | MR 1089237 | Zbl 0718.53052