Courbures intrinsèques dans les catégories analytico-géométriques
Bernig, Andreas ; Bröcker, Ludwig
Annales de l'Institut Fourier, Tome 53 (2003), p. 1897-1924 / Harvested from Numdam

Deux types de courbures sont associés à un sous-ensemble compact et définissable d'une variété riemannienne analytique réelle. Si la variété est de courbure constante, il y a des relations linéaires entre ces mesures. Comme application, nous démontrons une formule cinématique, définissons des densités locales, et nous étudions les volumes des simplexes réguliers.

Two types of curvatures are associated to a compact, definable subset of a real analytic Riemannian manifold. If the manifold has constant curvature, there are some linear relations between these measures. As application, a kinematic formula is proved, local densities are defined and volumes of regular simplexes are studied.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1995
Classification:  53C65,  14P10
Mots clés: courbures, espaces sous-analytiques, formule cinématique, densités
@article{AIF_2003__53_6_1897_0,
     author = {Bernig, Andreas and Br\"ocker, Ludwig},
     title = {Courbures intrins\`eques dans les cat\'egories analytico-g\'eom\'etriques},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1897-1924},
     doi = {10.5802/aif.1995},
     mrnumber = {2038783},
     zbl = {1053.53053},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1897_0}
}
Bernig, Andreas; Bröcker, Ludwig. Courbures intrinsèques dans les catégories analytico-géométriques. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1897-1924. doi : 10.5802/aif.1995. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1897_0/

[1] K. Bekka; D. Trotman On metrics properties of stratified sets, Manuscripta Math, Tome 111 (2003), pp. 71-95 | Article | MR 1981597 | Zbl 1033.58005

[2] A. Bernig Scalar Curvature of definable Alexandrov spaces, Advances in Geometry, Tome 2 (2002), pp. 29-55 | Article | MR 1880000 | Zbl 1027.53041

[3] A. Bernig Scalar Curvature of definable CAT spaces, Advances in Geometry, Tome 3 (2003), pp. 23-43 | Article | MR 1956586 | Zbl 1028.53031

[4] A. Bernig; L. Bröcker Lipschitz-Killing invariants, Mathematische Nachrichten, Tome 245 (2002), pp. 5-25 | Article | MR 1936341 | Zbl 1074.53064

[5] J. Bochnak; M. Coste; M.-F. Roy Géométrie Algébrique Réelle, Springer-Verlag (1987) | MR 949442 | Zbl 0633.14016

[6] M. Bridson; A. Haefliger Metric Spaces of Non-Positive Curvature, Springer-Verlag (1999) | MR 1744486 | Zbl 0988.53001

[7] L. Bröcker; M. Kuppe Integral geometry of tame sets, Geom. Dedicata, Tome 82 (2000), pp. 285-323 | Article | MR 1789065 | Zbl 1023.53057

[8] J. Cheeger; W. Müller; R. Schrader On the curvature of piecewise flat spaces, Comm. Math. Phys, Tome 92 (1984), pp. 405-454 | Article | MR 734226 | Zbl 0559.53028

[9] J. Cheeger; W. Müller; R. Schrader Kinematic and tube formulas for piecewise flat spaces, Indiana Univ. Math. I, Tome 35 (1986), pp. 737-754 | Article | MR 865426 | Zbl 0615.53058

[10] G. Comte Équisingularité réelle : invariants locaux et conditions de régularité (2001) (preprint Université de Nice)

[11] G. Comte; Y. Yomdin Tame Geometry with Applications in Smooth Analysis (livre à paraître) | Zbl 1076.14079

[12] M. Coste An introduction to o-minimal geometry (2000) (Universitá di Pisa, Dipartimento di Matematica)

[13] H. Federer Geometric Measure Theory, Springer Verlag, Berlin-Heidelberg-New York (1968) | MR 257325 | Zbl 0176.00801

[14] M. Ferrarotti About geodesic distance on Riemannian stratified spaces (1997) (preprint)

[15] J. Fu Curvature measures of subanalytic sets, Amer. J. Math, Tome 116 (1994), pp. 819-880 | Article | MR 1287941 | Zbl 0818.53091

[16] J. Fu Kinematic formulas in integral geometry, Indiana Univ. Math. J, Tome 39 (1990), pp. 1115-1154 | Article | MR 1087187 | Zbl 0703.53059

[17] J. Fu Monge-Ampère functions I, Indiana Univ. Math. J, Tome 38 (1989), pp. 745-771 | Article | MR 1017333 | Zbl 0668.49010

[18] M. Goresky; R. Macpherson Stratified Morse Theory, Springer Verlag, Berlin-Heidelberg (1988) | MR 932724 | Zbl 0639.14012

[19] H. Hamm On stratified Morse theory, Topology, Tome 38 (1999), pp. 427-438 | Article | MR 1660321 | Zbl 0936.58007

[20] M. Kashiwara; P. Schapira Sheaves on Manifolds, Springer Verlag, Berlin-Heidelberg-New York (1990) | MR 1074006 | Zbl 0709.18001

[21] M. Kuppe Integralgeometrie Whitney-Stratifizierter Mengen, Dissertation Münster (1999) | Zbl 0946.53041

[22] K. Kurdyka; G. Raby Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Tome 39 (1989) no. 3, pp. 753-771 | Article | Numdam | MR 1030848 | Zbl 0673.32015

[23] L. Van Den Dries Tame Topology and O-Minimal Structures, Cambridge University Press, London Math. Soc. Lecture Notes Ser, Tome 248 (1998) | MR 1633348 | Zbl 0953.03045

[24] L. Van Den Dries; C. Miller Geometric Categories and o-minimal structures, Duke Math. Journal, Tome 84 (1996), pp. 497-540 | Article | MR 1404337 | Zbl 0889.03025

[25] L.A. Santaló Introduction to Integral Geometry, Publications de l'Institut Mathématique de l'Université de Nanc, Paris (1953) | MR 60840 | Zbl 0052.39403

[26] J. Schürmann Topology of singular spaces and constructible sheaves (, www.math.uni-hamburg.de/home/schuermann) | Zbl 1041.55001

[27] R. Sulanke; P. Wintgen Differentialgeometrie und Faserbündel, Birkhäuser Verlag, Basel-Stuttgart (1972) | MR 413153 | Zbl 0271.53035 | Zbl 0327.53020

[28] D. Trotman Espaces stratifiés réels, Stratifications, singularities and differential equations (travaux en cours), Tome 55 (1997), pp. 93-107 | Zbl 0883.32025

[29] H. Weyl On the volume of tubes, Amer. J. Math, Tome 61 (1939), pp. 461-472 | Article | JFM 65.0796.01 | MR 1507388

[30] M. Zähle Curvature and currents for unions of sets with positive reach, Geom. Dedicata, Tome 23 (1987), pp. 155-171 | MR 892398 | Zbl 0627.53053

[31] M. Zähle Approximation and characterization of generalized Lipschitz-Killing curvatures, Ann. Global Anal. Geom, Tome 8 (1990), pp. 249-260 | Article | MR 1089237 | Zbl 0718.53052