Nous construisons deux procédés de résolution plongée d'un germe de singularité quasi- ordinaire d'hypersurface analytique complexe qui ne dépendent que des monômes caractéristiques associés à une projection quasi-ordinaire du germe. Ce résultat est une solution à l'un des problèmes ouverts posés par Lipman dans Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-503. Dans le premier procédé la singularité est plongée comme hypersurface. Dans le deuxième procédé, qui est inspiré par un travail de Goldin et Teissier pour les germes de courbes planes (voir Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), la singularité est replongée convenablement dans un espace affine de dimension plus grande et nous construisons des résolutions plongées avec un seul morphisme torique. Nous comparons ces deux procédés et nous montrons qu'ils coïncident sous certaines hypothèses.
We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.
@article{AIF_2003__53_6_1819_0, author = {Gonz\'alez P\'erez, Pedro D.}, title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1819-1881}, doi = {10.5802/aif.1993}, mrnumber = {2038781}, zbl = {1052.32024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1819_0} }
González Pérez, Pedro D. Toric embedded resolutions of quasi-ordinary hypersurface singularities. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1819-1881. doi : 10.5802/aif.1993. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1819_0/
[A'C-Ok] Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math, Tome 33 (1996), pp. 1003-1033 | MR 1435467 | Zbl 0904.14014
[A-M] Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math, Tome 260 (1973), pp. 47-83 | Article | MR 337955 | Zbl 0272.12102
[A-M] Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math., Tome 261 (1973), pp. 29-54 | MR 337955 | Zbl 0272.12102
[A1] On the ramification of algebraic functions., Amer. J. Math., Tome 77 (1955), pp. 575-592 | Article | MR 71851 | Zbl 0064.27501
[A2] Inversion and invariance of characteristic pairs, Amer. J. Math, Tome 89 (1967), pp. 363-372 | Article | MR 220732 | Zbl 0162.34103
[A3] Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977)
[B-M] Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math., Tome 52 (2000) no. 6, pp. 1149-1163 | Article | MR 1794300 | Zbl 1002.14003
[B-P-V] Compact Complex Surfaces, Springer-Verlag, Annals of Math. Studies (3) (1984) | MR 749574 | Zbl 0718.14023
[Bbk] Algebre commutative, Masson Tome Chap. I-IV (1981) | MR 643362 | Zbl 0498.12001
[Ca] Algebroid Curves in positive characteristic, Springer, Berlin, Lecture Notes in Mathematics, Tome 813 (1980) | MR 584440 | Zbl 0451.14010
[Co] Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski, Birkhäuser-Verlag (Progress in Mathematics) Tome 181 (2000), pp. 259-283 | Zbl 0969.14035
[Eg] Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften, Tome 147 (1983) | MR 701391 | Zbl 0559.14018
[Ew] Combinatorial Convexity and Algebraic Geometry, Springer-Verlag (1996) | MR 1418400 | Zbl 0869.52001
[F] Introduction to Toric Varieties, Princeton University Press, Annals of Math. Studies, Tome 131 (1993) | MR 1234037 | Zbl 0813.14039
[G-P] On the Approximate Roots of Polynomials, Annales Polonici Mathematici, Tome LX (1995) no. 3, pp. 199-210 | MR 1316488 | Zbl 0826.13012
[G-T] Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski., Birkhäuser-Verlag (Progress in Mathematics) Tome 181 (2000), pp. 315-340 | Zbl 0995.14002
[Gau] Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Tome 388 (1988) | MR 954948 | Zbl 0658.14004
[GB-GP] Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). | Zbl 1079.14059
[GB1] Invariants des singularités de courbes planes et courbure des fibres de Milnor (1996) (Tesis Doctoral, Universidad de La Laguna (Spain))
[GB2] Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc, Tome 81 (2000) no. 1, pp. 1-28 | Article | MR 1756330 | Zbl 01696272
[GP-M-N] The zeta function of a quasi-ordinary singularity II (to appear in R. Michler Memorial, Proc. Amer. Math. Soc.) | MR 1986117 | Zbl 1080.14002
[GP-T] Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. | Zbl 1052.14062
[GP1] Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math., Tome 52 (2000) no. 2, pp. 348-368 | Article | MR 1755782 | Zbl 0970.14027
[GP2] Quasi-ordinary singularities via toric geometry (2000) (Tesis Doctoral, Universidad de La Laguna)
[GP3] The semigroup of a quasi-ordinary hypersurface (to appear in J. Inst. Math. Jussieu) | MR 1990220
[GS-LJ] Modèles canoniques plongés. I, Kodai Math. J., Tome 14 (1991) no. 2, pp. 194-209 | Article | MR 1123416 | Zbl 0772.14008
[J] Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen , in der Umgebung einer stelle , , J. reine angew. Math., Tome 133 (1908), pp. 289-314 | Article | JFM 39.0493.01
[K-K-M-S] Toroidal Embeddings, Springer Verlag, Springer Lecture Notes in Mathematics, Tome 339 (1973) | Zbl 0271.14017
[Kou] Polyèdres de Newton et nombres de Milnor, Inv. Mat, Tome 32 (1976), pp. 1-31 | Article | MR 419433 | Zbl 0328.32007
[L-M-W] Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math., Tome 72 (1989) no. 1, pp. 87-113 | Numdam | MR 1026330 | Zbl 0705.32021
[L1] Quasi-ordinary singularities of embedded surfaces (1965) (Thesis, Harvard University)
[L2] Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics, Tome 29 (1975), pp. 187-230 | MR 389901 | Zbl 0306.14007
[L3] Quasi-ordinary singularities of surfaces in , Proceedings of Symposia in Pure Mathematics, Tome 40 (1983) no. 2, pp. 161-172 | MR 713245 | Zbl 0521.14014
[L4] Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Tome 388 (1988) | MR 954947 | Zbl 0658.14003
[L5] Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski., Birkhäuser-Verlag (Progress in Mathematics) Tome 181 (2000), pp. 485-503 | Zbl 0970.14011
[Lau] Normal two dimensional singularities, Princenton University Press, Annals of Math. Studies, Tome 71 (1971) | MR 320365 | Zbl 0245.32005
[Le-Ok] On resolution complexity of plane curves, Kodaira Math. J, Tome 18 (1995), pp. 1-36 | Article | MR 1317003 | Zbl 0844.14010
[LJ] Sur l'équivalence des singularités des courbes algebro\" \i des planes (coefficients de Newton), Introduction à la théorie des singularités I, Hermann, Paris (1988), pp. 49-154 | Zbl 0699.14036
[LJ-R] Arcs and wedges on sandwiched surface singularities, Amer. J. Math, Tome 121 (1999) no. 6, pp. 1191-1213 | Article | MR 1719822 | Zbl 0960.14015
[LJ-R2] Desingularization of both a plane branch and its monomial curve (2000) (Manuscript)
[Lu] On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics, Tome 40 (1983), pp. 185-193 | MR 713247 | Zbl 0527.14032
[M-N] The zeta function of a quasi-ordinary singularity I (to appear in Compositio Math.) | MR 1986117 | Zbl 1066.14004
[Me] Invariants polaires des courbes planes, Inv. Math., Tome 41 (1977), pp. 103-111 | Article | MR 460336 | Zbl 0371.14003
[Mu] The Red Book on Varieties and Schemes, Springer-Verlag, Lecture Notes in Mathematics, Tome 1358 (1988) | MR 971985 | Zbl 0658.14001
[Od] Convex Bodies and Algebraic Geometry, Springer-Verlag, Annals of Math. Studies, Tome 131 (1988) | MR 922894 | Zbl 0628.52002
[Ok] Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities, Birkhäuser, Basel (Progress in Mathematics) Tome 139 (1996) | Zbl 0857.14014
[PP1] Approximate roots, Valuation Theory and its Applications (Fields Inst. Communications Ser.) Tome vol. II | Zbl 1036.13017
[PP2] Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles (2001) (Thèse de Doctorat, Université de Paris 7)
[Re] A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55), Tome 14, pp. 159-187 | Zbl 0067.12904
[St] Gröbner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, Tome Vol 8 (1996) | MR 1363949 | Zbl 0856.13020
[T1] The monomial curve and its deformations. Appendix in [Z6]
[T2] Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. (Fields Inst. Communications Ser.) Tome vol. II | Zbl 1061.14016
[V1] Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4), Tome 22 (1989) no. 1, pp. 1-32 | Numdam | MR 985852 | Zbl 0675.14003
[V2] On Equiresolution and a question of Zariski, Acta Math, Tome 185 (2000), pp. 123-159 | Article | MR 1794188 | Zbl 0989.32004
[W] Reduction of the Singularities of an Algebraic Surface, Annals of Maths, Tome 36 (1935) no. 2, pp. 336-365 | Article | JFM 61.0705.02 | MR 1503227
[Wa] Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana, Tome 19 (2003), pp. 1-10 | MR 2023205 | Zbl 1057.14032
[Z1] Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques, Tome 78 (1954), pp. 31-40 | MR 62474 | Zbl 0055.38802
[Z2] The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz), Princenton University Press (1955), pp. 182-188 | Zbl 0087.35601
[Z3] Studies in Equisingularity. I., Amer. J. Math., Tome 87 (1965), pp. 507-536 | MR 177985 | Zbl 0132.41601
[Z3] Studies in equisingularity. II., Amer. J. Math., Tome 87 (1965), pp. 972-1006 | MR 191898 | Zbl 0146.42502
[Z3] Collected Papers Tome IV (1979)
[Z4] Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969), Roma (1970), pp. 261-343 | Zbl 0204.54503
[Z4] Collected papers Tome IV (1979)
[Z5] Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8), Tome 43 (1967), pp. 135-146 | MR 229648 | Zbl 0168.18903
[Z5] Collected papers Tome I (1979)
[Z6] Le problème des modules pour les branches planes, Hermann, Paris (1986) | MR 861277 | Zbl 0592.14010