Grâce à de nouveaux arguments, nous améliorons les majorations connues du nombre maximal de points rationnels sur une courbe de genre définie sur un corps fini , pour certains couples . En particulier, nous donnons huit valeurs de qui étaient jusqu’à présent inconnues : , , , , , , , et . Nous redémontrons aussi, avec une utilisation minimale de l’ordinateur, un résultat de Savitt : il n’y a pas de courbe de genre sur ayant exactement points rationnels. Enfin, nous démontrons qu’il y a une infinité de tels que pour tout satisfaisant , la différence entre la borne de Weil-Serre de et la valeur exacte de est au moins égale à .
We give new arguments that improve the known upper bounds on the maximal number of rational points of a curve of genus over a finite field , for a number of pairs . Given a pair and an integer , we determine the possible zeta functions of genus- curves over with points, and then deduce properties of the curves from their zeta functions. In many cases we can show that a genus- curve over with points must have a low-degree map to another curve over , and often this is enough to give us a contradiction. In particular, we are able to provide eight previously unknown values of , namely: , , , , , , , and . Our arguments also allow us to give a non-computer-intensive proof of the recent result of Savitt that there are no genus- curves over having exactly rational points. Furthermore, we show that there is an infinite sequence of ’s such that for every with , the difference between the Weil-Serre bound on and the actual value of is at least .
@article{AIF_2003__53_6_1677_0, author = {Howe, Everett W. and Lauter, Kristin E.}, title = {Improved upper bounds for the number of points on curves over finite fields}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1677-1737}, doi = {10.5802/aif.1990}, mrnumber = {2038778}, zbl = {1065.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1677_0} }
Howe, Everett W.; Lauter, Kristin E. Improved upper bounds for the number of points on curves over finite fields. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1677-1737. doi : 10.5802/aif.1990. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1677_0/
[1] The Magma algebra system I: The user language, J. Symbolic Comput., Tome 24 (1997), pp. 235-265 | Article | MR 1484478 | Zbl 0898.68039
[2] The p-rank of curves and covers of curves, Courbes semi-stables et groupe fondamental en géométrie algébrique, Birkhäuser, Basel (Progr. Math.) Tome 187 (2000), pp. 267-277 | Zbl 0979.14015
[3] Variétés abéliennes ordinaires sur un corps fini, Invent. Math., Tome 8 (1969), pp. 238-243 | Article | MR 254059 | Zbl 0179.26201
[4] Real polynomials with all roots on the unit circle and abelian varieties over finite fields, J. Number Theory, Tome 73 (1998), pp. 426-450 | Article | MR 1657992 | Zbl 0931.11023
[4] Corrigendum: Real polynomials with all roots on the unit circle and abelian varieties over finite fields, J. Number Theory, Tome 83 (2000) no. 1, pp. 182 | Zbl 0931.11023
[5] The genus of curves over finite fields with many rational points, Manuscripta Math, Tome 89 (1996), pp. 103-106 | Article | MR 1368539 | Zbl 0857.11032
[6] Tables of curves with many points, Math. Comp., Tome 69 (2000), pp. 797-810 | Article | MR 1654002 | Zbl 0965.11028
[7] Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc., Tome 347 (1995), pp. 2361-2401 | Article | MR 1297531 | Zbl 0859.14016
[8] On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field, J. Number Theory, Tome 92 (2002), pp. 139-163 | Article | MR 1880590 | Zbl 0998.11031
[9] On the genus of a maximal curve, Math. Ann., Tome 323 (2002), pp. 589-608 | Article | MR 1923698 | Zbl 1018.11029
[10] Euclid's algorithm in complex quartic fields, Acta Arith., Tome 20 (1972), pp. 393-400 | MR 304350 | Zbl 0224.12001
[11] Improved upper bounds for the number of rational points on algebraic curves over finite fields, C. R. Acad. Sci. Paris, Sér. I Math., Tome 328 (1999), pp. 1181-1185 | Article | MR 1701382 | Zbl 0948.11024
[12] Non-existence of a curve over of genus 5 with 14 rational points, Proc. Amer. Math. Soc, Tome 128 (2000), pp. 369-374 | Article | MR 1664414 | Zbl 0983.11036
[13] Zeta functions of curves over finite fields with many rational points, Coding Theory, Cryptography and Related Areas, Springer-Verlag, Berlin (2000), pp. 167-174 | Zbl 1009.11049
[14] Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields, J. Algebraic Geom., Tome 10 (2001), pp. 19-36 | MR 1795548 | Zbl 0982.14015
[15] The maximum or minimum number of rational points on genus three curves over finite fields, Compositio Math., Tome 134 (2002), pp. 87-111 | Article | MR 1931964 | Zbl 1031.11038
[16] Abelian Varieties, Oxford University Press, Oxford, Tata Institute of Fundamental Research Studies in Mathematics, Tome 5 (1985) | Zbl 0583.14015
[17] Commutative group schemes, Springer-Verlag, Berlin, Lecture Notes in Math, Tome 15 (1966) | MR 213365 | Zbl 0216.05603
[18] The maximum number of rational points on a curve of genus 4 over is 25, Canad. J. Math., Tome 55 (2003), pp. 331-352 | Article | MR 1969795 | Zbl 02005249
[19] Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris, Sér. I Math., Tome 296 (1983), pp. 397-402 | MR 703906 | Zbl 0538.14015
[20] Nombres de points des courbes algébriques sur , Sém. Théor. Nombres Bordeaux 1982/83, Tome Exp. No. 22 | Zbl 0538.14016
[21] Résumé des cours de 1983--1984, Ann. Collège France (1984), pp. 79-83
[22] Rational points on curves over finite fields (1985) (unpublished notes by Fernando Q. Gouvéa of lectures at Harvard University)
[23] The trace of totally positive and real algebraic integers, Ann. of Math (2), Tome 46 (1945), pp. 302-312 | Article | MR 12092 | Zbl 0063.07009
[24] Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble), Tome 33 (1984) no. 3, pp. 1-28 | Article | Numdam | MR 762691 | Zbl 0534.12002
[25] On the Riemann hypothesis in hyperelliptic function fields, Analytic number theory, American Mathematical Society, Providence, R.I. (Proc. Sympos. Pure Math) Tome 24 (1973), pp. 285-302 | Zbl 0271.14012
[26] Algebraic Function Fields and Codes, Springer-Verlag, Berlin (1993) | MR 1251961 | Zbl 0816.14011
[27] Weierstrass points and curves over finite fields, Proc. London Math. Soc (3), Tome 52 (1986), pp. 1-19 | Article | MR 812443 | Zbl 0593.14020
[28] The p-rank of Artin-Schreier curves, Manuscripta Math., Tome 16 (1975), pp. 169-193 | Article | MR 376693 | Zbl 0321.14017
[29] Classes d'isogénie des variétés abéliennes sur un corps fini, Séminaire Bourbaki 1968/69, Springer-Verlag, Berlin (Lecture Notes in Math) Tome 179 (1971), pp. 95-110 | Numdam | Zbl 0212.25702
[30] Improving the Oesterlé bound (preprint)