On étudie l’algèbre des endomorphismes du motif associé à une forme modulaire parabolique sans une multiplication complexe. On démontre que cette algèbre possède une sous-algèbre isomorphe à une algèbre de type produit croisé. La conjecture de Tate prédit que est l’algèbre des endomorphismes du motif. On étudie également la classe de Brauer de . Par exemple quand le nebentypus est réel et est un nombre premier qui ne divise pas le niveau, on démontre que le comportement local de en une place dominant est déterminé essentiellement par la valuation correspondante du -ième coefficient de Fourier de la forme.
We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra . The Tate conjecture predicts that is the full endomorphism algebra of the motive. We also investigate the Brauer class of . For example we show that if the nebentypus is real and is a prime that does not divide the level, then the local behaviour of at a place lying above is essentially determined by the corresponding valuation of the -th Fourier coefficient of the form.
@article{AIF_2003__53_6_1615_0, author = {Brown, Alexander F. and Ghate, Eknath P.}, title = {Endomorphism algebras of motives attached to elliptic modular forms}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1615-1676}, doi = {10.5802/aif.1989}, mrnumber = {2038777}, zbl = {1050.11062}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_6_1615_0} }
Brown, Alexander F.; Ghate, Eknath P. Endomorphism algebras of motives attached to elliptic modular forms. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1615-1676. doi : 10.5802/aif.1989. http://gdmltest.u-ga.fr/item/AIF_2003__53_6_1615_0/
[AL78] Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math., Tome 48 (1978) no. 3, pp. 221-243 | Article | MR 508986 | Zbl 0369.10016
[BR93] Motives for Hilbert modular forms, Invent. Math., Tome 114 (1993), pp. 55-87 | Article | MR 1235020 | Zbl 0829.11028
[Bre01] Lectures on p-adic Hodge theory, deformations and local Langlands, Advanced Course Lecture Notes, Centre de Recerca Matemàtica, Barcelona, Tome 20
[Del69] Formes modulaires et représentations -adiques, Séminaire Bourbaki, 1968/1969, Springer-Verlag (Lecture Notes in Math.) Tome 179, exp. 355 (1971), pp. 139-172 | Numdam | Zbl 0206.49901
[Dem72] Lectures on p-divisible groups, Springer-Verlag, Lecture Notes in Math., Tome 302 (1972) | MR 344261 | Zbl 0247.14010
[DR73] Les schémas de modules de courbes elliptique, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.) Tome Vol. 349 (1973), pp. 143-316 | Zbl 0281.14010
[Fal83] Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math., Tome 73 (1983), pp. 349-366 | Article | MR 718935 | Zbl 0588.14026
[FM83] Geometric Galois representations, International Press, Ser. Number Theory, Tome 1 (1995) | MR 1363495 | Zbl 0839.14011
[Hid00] Modular Forms and Galois Cohomology, Cambridge University Press, Cambridge (2000) | MR 1779182 | Zbl 0952.11014
[Jan92] Motives, numerical equivalence, and semi-simplicity, Invent. Math., Tome 107 (1992) no. 3, pp. 447-452 | Article | MR 1150598 | Zbl 0762.14003
[Mom81] On the -adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Tome 28 (1981), pp. 89-109 | MR 617867 | Zbl 0482.10023
[Quer98] La classe de Brauer de l'algèbre d'endomorphismes d'une variété abélienne modulaire, C. R. Acad. Sci. Paris, Sér. I Math., Tome 327 (1998) no. 3, pp. 227-230 | Article | MR 1650241 | Zbl 0936.14032
[Rib80] Twists of modular forms and endomorphisms of abelian varieties, Math. Ann., Tome 253 (1980) no. 1, pp. 43-62 | Article | MR 594532 | Zbl 0421.14008
[Rib81] Endomorphism algebras of abelian varieties attached to newforms of weight 2, Seminar on Number Theory, Paris 1979-1980, Birkhäuser, Boston, Mass. (Progr. Math.) Tome 12 (1981), pp. 263-276 | Zbl 0467.14006
[Rib92] Abelian varieties over and modular forms, Proc. KAIST Math. Workshop (1992), pp. 53-79
[Sch90] Motives for modular forms, Invent. Math., Tome 100 (1990), pp. 419-430 | Article | MR 1047142 | Zbl 0760.14002
[Ser81] Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci., Tome 54 (1981), pp. 323-401 | Numdam | MR 644559 | Zbl 0496.12011
[Shi71] On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J., Tome 43 (1971), pp. 199-208 | MR 296050 | Zbl 0225.14015
[Shi73] On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan, Tome 25 (1973), pp. 523-544 | Article | MR 318162 | Zbl 0266.14017
[Ste00] The first newform such that for all (2000) (Preprint)
[Vol01] Les représentations -adiques associées aux courbes elliptiques sur , J. reine angew. Math., Tome 535 (2001), pp. 65-101 | Article | MR 1837096 | Zbl 1024.11038