Soit une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit un feuilletage de dimension sur , muni d’une structure projective réelle transverse. On suppose que satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de dans le revêtement universel de est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique projectif.
Let be a Seifert manifold with non-solvable fundamental group. Let be a one- dimensional foliation on , equipped with a transverse real projective structure. We assume moreover that satisfies the Homotopy Lifting Property, i.e., that the leaf space of the lifting of in the universal covering of satisfies the Hausdorff separation property. Then, up to finite coverings, belongs to one of the following three families of transversely projective foliations: the family of projective fibrations, the family of convex geodesic foliations, or the family of projective horocyclic foliations.
@article{AIF_2003__53_5_1551_0, author = {Barbot, Thierry}, title = {Feuilletages transversalement projectifs sur les vari\'et\'es de Seifert}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1551-1613}, doi = {10.5802/aif.1988}, mrnumber = {2032943}, zbl = {1036.57006}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_5_1551_0} }
Barbot, Thierry. Feuilletages transversalement projectifs sur les variétés de Seifert. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1551-1613. doi : 10.5802/aif.1988. http://gdmltest.u-ga.fr/item/AIF_2003__53_5_1551_0/
[1] Actions de groupes sur les 1-variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. (6), Tome 7 (1998) no. 4, pp. 559-597 | Article | Numdam | MR 1693597 | Zbl 0932.57027
[2] Variétés affines radiales de dimension trois, Bull. Soc. Math. France, Tome 128 (2000), pp. 347-389 | Numdam | MR 1792474 | Zbl 0954.57003
[3] Flag structures on Seifert manifolds, Geom. Topol., Tome 5 (2001), pp. 227-266 | Article | MR 1825662 | Zbl 1032.57037
[4] Plane affine geometry of Anosov flows, Ann. Sci. École Norm. Sup., Tome 34 (2001) no. 6, pp. 871-889 | Numdam | MR 1872423 | Zbl 01750768
[5] Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., Tome 111 (1993) no. 2, pp. 285-308 | Article | MR 1198811 | Zbl 0777.58029
[6] Nilvariétés projectives, Comment. Math. Helv., Tome 69 (1994) no. 3, pp. 447-473 | Article | MR 1289337 | Zbl 0839.53033
[7] Automorphismes des cônes convexes, Invent. Math., Tome 141 (2000), pp. 149-193 | Article | MR 1767272 | Zbl 0957.22008
[8] Tores affines, Crystallographic groups and their generalizations (Kortrijk, 1999), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 262 (2000), pp. 1-37 | Zbl 0990.53053
[9] Convexes divisibles, C. R. Acad. Sci. Paris, Sér. I Math., Tome 332 (2001) no. 5, pp. 387-390 | Article | MR 1826621 | Zbl 1010.37014
[10] On transversely holomorphic flows. I, Invent. Math., Tome 126 (1996) no. 2, pp. 265-279 | Article | MR 1411132 | Zbl 0873.57021
[11] Projective geometry and projective metrics, Academic Press (1953) | MR 54980 | Zbl 0052.37305
[12] Endsets of exceptionnal leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publishing, River Edge, NJ (2002), pp. 225-261 | Zbl 1011.57009
[13] Inexistence de structures affines sur les fibrés de Seifert, Math. Ann., Tome 296 (1993), pp. 743-753 | Article | MR 1233496 | Zbl 0793.57006
[14] Flots riemanniens, Transversal structure of foliations (Toulouse, 1982) (Astérisque) Tome 116 (1984), pp. 31-52 | Zbl 0548.58033
[15] Convex decomposition of real projective surfaces. I: -annuli and convexity, J. Diff. Geom., Tome 40 (1994), pp. 165-208 | MR 1285533 | Zbl 0818.53042
[16] The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc., Tome 34 (1997), pp. 161-171 | Article | MR 1414974 | Zbl 0866.57001
[17] The decomposition and classification of radiant affine 3-manifolds, avec un appendice par T. Barbot, Mem. Amer. Math. Soc., Tome 154 (2001) no. 730 | MR 1848866 | Zbl 0992.57009
[18] Solvariétés projectives de dimension trois (1999) (Thèse Université Paris VII)
[19] Foliations with all leaves compact, Ann. Inst. Fourier, Tome 26 (1976) no. 1, pp. 265-282 | Article | Numdam | MR 420652 | Zbl 0313.57017
[20] Affine 3-manifolds that fiber by circles (1992) (preprint I.H.E.S)
[21] Transitive Anosov flows and pseudo-Anosov maps, Topology, Tome 22 (1983) no. 3, pp. 299-303 | Article | MR 710103 | Zbl 0516.58035
[22] Three-dimensional affine crystallographic groups, Adv. in Math., Tome 47 (1983) no. 1, pp. 1-49 | Article | MR 689763 | Zbl 0571.57030
[23] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4), Tome 20 (1987) no. 2, pp. 251-270 | Numdam | MR 911758 | Zbl 0663.58025
[24] On transversely holomorphic flows. II, Invent. Math., Tome 126 (1996) no. 2, pp. 281-286 | Article | MR 1411133 | Zbl 0873.57022
[25] Convex real projective structures on compact surfaces, J. Diff. Geom., Tome 31 (1990), pp. 791-845 | MR 1053346 | Zbl 0711.53033
[26] Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), Amer. Math. Soc.,, Providence, RI (Contemp. Math.) Tome 74 (1988), pp. 169-198 | Zbl 0659.57004
[27] Groupoïde d'holonomie et classifiants, Astérisque, Tome 116 (1984), pp. 70-97 | MR 755163 | Zbl 0562.57012
[28] Feuilletages en cylindres, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Springer, Berlin (Lecture Notes in Math.) Tome 597 (1977), pp. 252-270 | Zbl 0361.57020
[29] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, Amer. Math. Soc., Providence, R.I., Tome 43 (1980) | Zbl 0433.57001
[30] Affine flows on 3-manifolds, Mem. Amer. Math. Soc., Tome 162 (2003) no. 771 | MR 1955493 | Zbl 1026.57022
[31] Transverse intersections of foliations in three-manifolds, Monogr. Enseign. Math., Tome 38 (2001) | MR 1929337 | Zbl 1026.57023
[32] The geometry and topology of 3-manifolds, Princeton Lect. Notes, Tome Chapitre 13 (1977)
[33] Foliations on 3-manifolds which are circle bundles (1972) (Thesis, Berkeley)
[34] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math., Tome 3 (1967), pp. 308-333 | Article | MR 235576 | Zbl 0168.44503
[34] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. ibid, Tome 4 (1967), pp. 87-117 | MR 235576 | Zbl 0168.44503