Functional models and asymptotically orthonormal sequences
[Modèles fonctionnels et suites asymptotiquement orthonormales]
Chalendar, Isabelle ; Fricain, Emmanuel ; Timotin, Dan
Annales de l'Institut Fourier, Tome 53 (2003), p. 1527-1549 / Harvested from Numdam

Supposons que H 2 est l’espace de Hardy du disque unité du plan complexe et Θ une fonction intérieure. On donne des conditions pour qu’une suite de noyaux reproduisants normalisés dans l’espace modèle K Θ =H 2 ΘH 2 soit asymptotiquement proche d’une suite orthonormale. La question de la complétude est aussi étudiée.

Suppose H 2 is the Hardy space of the unit disc in the complex plane, while Θ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space K Θ =H 2 ΘH 2 to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1987
Classification:  47A45,  46E22,  46B15,  30D55
Mots clés: espace de Hardy, modèle fonctionnel, suite asymptotiquement orthonormale
@article{AIF_2003__53_5_1527_0,
     author = {Chalendar, Isabelle and Fricain, Emmanuel and Timotin, Dan},
     title = {Functional models and asymptotically orthonormal sequences},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1527-1549},
     doi = {10.5802/aif.1987},
     mrnumber = {2032942},
     zbl = {1060.47014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_5_1527_0}
}
Chalendar, Isabelle; Fricain, Emmanuel; Timotin, Dan. Functional models and asymptotically orthonormal sequences. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1527-1549. doi : 10.5802/aif.1987. http://gdmltest.u-ga.fr/item/AIF_2003__53_5_1527_0/

[1] I. Boricheva Geometric properties of projections of reproducing kernels on z * -invariant subspaces of H 2 , Journal of Functional Analysis, Tome 161 (1999), pp. 397-417 | Article | MR 1674647 | Zbl 0939.30005

[2] D. Clark One dimensional perturbations of restricted shifts, J. Analyse Math, Tome 25 (1972), pp. 169-191 | Article | MR 301534 | Zbl 0252.47010

[3] E. Fricain Bases of reproducing kernels in model spaces, J. Operator Theory, Tome 46 (2001), pp. 517-543 | MR 1897152 | Zbl 0995.46021

[4] P. Gorkin; H.-M. Lingenberg; R. Mortini Homeomorphic disks in the spectrum of H , Indiana Univ. Math. J, Tome 39 (1990), pp. 961-983 | Article | MR 1087181 | Zbl 0703.46036 | Zbl 0799.46061

[5] H. Hedenmalm Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc, Tome 99 (1987), pp. 489-495 | Article | MR 875386 | Zbl 0617.46059

[6] E. Hewitt; K. Stromberg Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York (1969) | MR 367121 | Zbl 0225.26001

[7] S.V. Hru#X0161;#X010D;Ev; N.K. Nikolski; B.S. Pavlov; V.P. Havin And N.K. Nikolski, Eds. Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory, Springer-Verlag, Berlin Heidelberg New-York (Lecture Notes in Mathematics) (1981), pp. 214-335 | Zbl 0466.46018

[8] N. Levinson Gap and Density Theorems, Amer. Math. Soc., New-York (Colloquium Publ.) Tome 26 (1940) | JFM 66.0332.01 | Zbl 0145.08003

[9] N.K. Nikolski Treatise on the Shift Operator, Springer-Verlag, Berlin, Grundlehren der mathematischen Wissenschafte, Tome vol. 273 (1986) | MR 827223 | Zbl 0587.47036

[10] N.K. Nikolski Operators, Functions and Systems: An Easy Reading. Model Operators and Systems, American Mathematical Society, Mathematical Surveys and Monographs, Tome 93, Volume 2 (2002) | MR 1892647 | Zbl 1007.47002

[11] N.K. Nikolski; A.L. Volberg; C. Sadosky Ed. Tangential and approximate free interpolation, Analysis and partial differential equations, Dekker, New-York (Lecture Notes in Pure and Applied. Math.) (1990), pp. 277-299 | Zbl 0697.30036

[12] R.E. Paley; N. Wiener Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, Colloquium Publ., Tome vol. 19 (1934) | Zbl 0011.01601

[13] C. Sundberg; T.H. Wolff Interpolating sequences for QA B , Trans. Amer. Math. Soc, Tome 276 (1983), pp. 551-581 | MR 688962 | Zbl 0536.30025

[14] B. Sz-Nagy; C. Foias Harmonic Analysis of Operators on Hilbert Spaces, North-Holland Publishing Co., Amsterdam-London (1970) | MR 275190 | Zbl 0201.45003

[15] A.L. Volberg Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory, Tome 7 (1982), pp. 209-218 | MR 658609 | Zbl 0489.47015