Distribution of nodes on algebraic curves in N
[La distribution des nœuds sur les courbes algébriques de N ]
Bloom, Thomas ; Levenberg, Norman
Annales de l'Institut Fourier, Tome 53 (2003), p. 1365-1385 / Harvested from Numdam

Soit A une variété algébrique de dimension 1 de N . On note m d la dimension de l’espace vectoriel complexe des restrictions à A des polynmôes holomorphes de degré d. On considère un compact non polaire K et pour chaque d=1,2,..., on choisit m d points (nœuds) {A dj } j=1,...,m d dans K. Enfin, on note Λ d la constante de Lebesgue d’ordre d associée aux noeuds {A dj } : cette constante est la norme de l’opérateur L d sur C(K), où L d (f) est le polynôme d’interpolation de Lagrange de f, de degré d, aux points {A dj }. Nous utilisons la théorie du pluripotentiel pour montrer qu’il existe une mesure m K portée par K, de masse totale égale à 1, et telle que pour n’importe quels noyaux {A dj } sur K vérifiant lim sup d Λ d 1/d 1, les mesures discrètes μ d :=1 m d j=1 m d δ A dj ,d=1,2,..., convergent faiblement vers μ K .

Given an irreducible algebraic curves A in N , let m d be the dimension of the complex vector space of all holomorphic polynomials of degree at most d restricted to A. Let K be a nonpolar compact subset of A, and for each d=1,2,..., choose m d points {A dj } j=1,...,m d in K. Finally, let Λ d be the d-th Lebesgue constant of the array {A dj }; i.e., Λ d is the operator norm of the Lagrange interpolation operator L d acting on C(K), where L d (f) is the Lagrange interpolating polynomial for f of degree d at the points {A dj } j=1,...,m d . Using techniques of pluripotential theory, we show that there is a probability measure μ K supported on K such that for any array in K satisfying lim sup d Λ d 1/d 1, the discrete measures μ d :=1 m d j=1 m d δ A dj ,d=1,2,..., converge weak-* to μ K .

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1982
Classification:  32U05,  31C10,  41A05
Mots clés: courbe algébrique, constante de Lebesgue
@article{AIF_2003__53_5_1365_0,
     author = {Bloom, Thomas and Levenberg, Norman},
     title = {Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1365-1385},
     doi = {10.5802/aif.1982},
     mrnumber = {2032937},
     zbl = {1044.32026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_5_1365_0}
}
Bloom, Thomas; Levenberg, Norman. Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1365-1385. doi : 10.5802/aif.1982. http://gdmltest.u-ga.fr/item/AIF_2003__53_5_1365_0/

[BBCL] T. Bloom; L. Bos; C. Christensen; N. Levenberg Polynomial interpolation of holomorphic functions in and n , Rocky Mtn. J. Math, Tome 22 (1992) no. 2, pp. 441-470 | Article | MR 1180711 | Zbl 0763.32009

[Be] E. Bedford The operator (dd c ) n on complex spaces, Séminaire Pierre Lelong-Henri Skoda 1980-1981 et Colloque de Wimereux, Mai 1981, (Springer-Verlag) (Lecture Notes in Math.) Tome 919 (1982), pp. 294-323 | Zbl 0479.32006

[BLMT] L. Bos; N. Levenberg; P. Milman; B. A. Taylor Tangential Markov Inequalities Characterize Algebraic Submanifolds of BbbR n , Indiana J. Math, Tome 44 (1995) no. 1, pp. 115-138 | MR 1336434 | Zbl 0824.41015

[D] J.-P. Demailly Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Bull. de la Soc. Math. de France, Tome 113, Fasc. 2 (1985) no. 19, pp. 1-125 | Numdam | MR 813252 | Zbl 0579.32012

[DG] F. Docquier; H. Grauert Levisches problem und rungescher Satz für teilgebiete Steinscher Mannigfaltigkeiten (German), Math. Ann, Tome 140 (1960), pp. 94-123 | Article | MR 148939 | Zbl 0095.28004

[GMS] M. Götz; V. Maymeskul; And E. B. Saff Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in 2 , Constructive Approximation, Tome 18 (2002) no. 2, pp. 255-284 | Article | MR 1890499 | Zbl 1004.30004

[H] L. Hörmander Notions of Convexity, Birkhäuser, Boston (1994) | MR 1301332 | Zbl 0835.32001

[K] M. Klimek Pluripotential Theory, Clarendon Press, Oxford (1991) | MR 1150978 | Zbl 0742.31001

[Kr] S. Krantz Function Theory of Several Complex Variables, Wiley, New York (1982) | MR 635928 | Zbl 0471.32008

[Ru] W. Rudin A geometric criterion for algebraic varieties, J. Math. Mech, Tome 20 (1968) no. 7, pp. 671-683 | MR 219750 | Zbl 0157.13202

[Sa1] A. Sadullaev An estimate for polynomials on analytic sets, Math. USSR Izvestiya, Tome 20 (1983) no. 3, pp. 493-502 | Article | MR 661145 | Zbl 0582.32023

[Sa2] A. Sadullaev Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk UzSSR, Tome 5 (1982), p. 3-4 | MR 589642 | Zbl 0637.32014

[T] B. A. Taylor An estimate for an extremal plurisubharmonic function on n , Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983, (Springer-Verlag) (Lecture Notes in Math.) Tome 1028 (1983), pp. 318-328 | Zbl 0522.32014

[Ze] A. Zeriahi Fonction de Green pluricomplex à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand, Tome 69 (1991), pp. 89-126 | MR 1143476 | Zbl 0748.31006