Soit une variété algébrique de dimension 1 de . On note la dimension de l’espace vectoriel complexe des restrictions à des polynmôes holomorphes de degré . On considère un compact non polaire et pour chaque on choisit points (nœuds) dans . Enfin, on note la constante de Lebesgue d’ordre associée aux noeuds : cette constante est la norme de l’opérateur sur , où est le polynôme d’interpolation de Lagrange de , de degré , aux points . Nous utilisons la théorie du pluripotentiel pour montrer qu’il existe une mesure portée par , de masse totale égale à 1, et telle que pour n’importe quels noyaux sur vérifiant , les mesures discrètes convergent faiblement vers .
Given an irreducible algebraic curves in , let be the dimension of the complex vector space of all holomorphic polynomials of degree at most restricted to . Let be a nonpolar compact subset of , and for each choose points in . Finally, let be the -th Lebesgue constant of the array ; i.e., is the operator norm of the Lagrange interpolation operator acting on , where is the Lagrange interpolating polynomial for of degree at the points . Using techniques of pluripotential theory, we show that there is a probability measure supported on such that for any array in satisfying , the discrete measures converge weak- to .
@article{AIF_2003__53_5_1365_0, author = {Bloom, Thomas and Levenberg, Norman}, title = {Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1365-1385}, doi = {10.5802/aif.1982}, mrnumber = {2032937}, zbl = {1044.32026}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_5_1365_0} }
Bloom, Thomas; Levenberg, Norman. Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1365-1385. doi : 10.5802/aif.1982. http://gdmltest.u-ga.fr/item/AIF_2003__53_5_1365_0/
[BBCL] Polynomial interpolation of holomorphic functions in and , Rocky Mtn. J. Math, Tome 22 (1992) no. 2, pp. 441-470 | Article | MR 1180711 | Zbl 0763.32009
[Be] The operator on complex spaces, Séminaire Pierre Lelong-Henri Skoda 1980-1981 et Colloque de Wimereux, Mai 1981, (Springer-Verlag) (Lecture Notes in Math.) Tome 919 (1982), pp. 294-323 | Zbl 0479.32006
[BLMT] Tangential Markov Inequalities Characterize Algebraic Submanifolds of , Indiana J. Math, Tome 44 (1995) no. 1, pp. 115-138 | MR 1336434 | Zbl 0824.41015
[D] Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Bull. de la Soc. Math. de France, Tome 113, Fasc. 2 (1985) no. 19, pp. 1-125 | Numdam | MR 813252 | Zbl 0579.32012
[DG] Levisches problem und rungescher Satz für teilgebiete Steinscher Mannigfaltigkeiten (German), Math. Ann, Tome 140 (1960), pp. 94-123 | Article | MR 148939 | Zbl 0095.28004
[GMS] Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in , Constructive Approximation, Tome 18 (2002) no. 2, pp. 255-284 | Article | MR 1890499 | Zbl 1004.30004
[H] Notions of Convexity, Birkhäuser, Boston (1994) | MR 1301332 | Zbl 0835.32001
[K] Pluripotential Theory, Clarendon Press, Oxford (1991) | MR 1150978 | Zbl 0742.31001
[Kr] Function Theory of Several Complex Variables, Wiley, New York (1982) | MR 635928 | Zbl 0471.32008
[Ru] A geometric criterion for algebraic varieties, J. Math. Mech, Tome 20 (1968) no. 7, pp. 671-683 | MR 219750 | Zbl 0157.13202
[Sa1] An estimate for polynomials on analytic sets, Math. USSR Izvestiya, Tome 20 (1983) no. 3, pp. 493-502 | Article | MR 661145 | Zbl 0582.32023
[Sa2] Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk UzSSR, Tome 5 (1982), p. 3-4 | MR 589642 | Zbl 0637.32014
[T] An estimate for an extremal plurisubharmonic function on , Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983, (Springer-Verlag) (Lecture Notes in Math.) Tome 1028 (1983), pp. 318-328 | Zbl 0522.32014
[Ze] Fonction de Green pluricomplex à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand, Tome 69 (1991), pp. 89-126 | MR 1143476 | Zbl 0748.31006