On donne une conjecture concernant les représentations modulaires de sur les corps finis qui est de nature combinatoire (sans utiliser de formes modulaires). On démontre que cette conjecture est équivalente à celle de Serre. L’idée principale est de remplacer les formes modulaires à coefficients dans un corps fini de caractéristique , par leurs équivalents dans la théorie des symboles modulaires modulo .
We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic , by their counterparts in the theory of modular symbols.
@article{AIF_2003__53_5_1287_0, author = {Herremans, Adriaan}, title = {A combinatorial interpretation of Serre's conjecture on modular Galois representations}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1287-1321}, doi = {10.5802/aif.1980}, mrnumber = {2032935}, zbl = {1056.11032}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_5_1287_0} }
Herremans, Adriaan. A combinatorial interpretation of Serre's conjecture on modular Galois representations. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1287-1321. doi : 10.5802/aif.1980. http://gdmltest.u-ga.fr/item/AIF_2003__53_5_1287_0/
[1] Dimensions des espaces de formes modulaires, Springer-Verlag (Lecture Notes in Mathematics) Tome 627 (1977), pp. 69-78 | Zbl 0371.10020
[2] Serre's conjectures, Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994) (CMS Conf. Proc.) Tome 17, pp. 135-153 | Zbl 0848.11019
[3] Formes modulaires de poids, Ann. Sci. E.N.S, Tome 7 (1974), pp. 507-530 | Numdam | MR 379379 | Zbl 0321.10026
[4] Modular forms and modular curves, Seminar on Fermat's Last Theorem (CMS conference proceedings) (1995), pp. 39-134 | Zbl 0853.11032
[5] The weight in Serre's conjectures on modular forms, Inventiones Mathematicae, Tome 109 (1992), pp. 563-594 | Article | MR 1176206 | Zbl 0777.11013
[6] Serre's conjecture, Modular Forms and Fermat's Last Theorem, Springer-Verlag (1997), pp. 209-242 | Zbl 0918.11023
[7] A combinatorial interpretation of Serre's conjecture on modular Galois representations (2001) (Ph.D.thesis K.U.Leuven (28th May))
[8] Elliptic Curves, Oxford University Press (1992) | MR 1193029 | Zbl 0804.14013
[9] Parabolic Points and Zeta-Function of Modular Curves, Math. USSR Izvestija, Tome 6 (1972), pp. 19-64 | Article | MR 314846 | Zbl 0248.14010
[10] Commutative algebra, W. A. Benjamin, New York (1970) | MR 266911 | Zbl 0211.06501
[11] Périodes de formes modulaires de poids 1 (2001) (Thèse de doctorat Paris 7 (20 décembre))
[12] Universal Fourier expansions of modular forms, Springer-Verlag (Lecture Notes in Mathematics) Tome 1585 (1994), pp. 59-94 | Zbl 0844.11033
[13] Modular Forms, Springer-Verlag (1989) | MR 1021004 | Zbl 0701.11014
[14] Sur les représentations modulaires de degré 2 de , Duke Mathematical Journal, Tome 54 (1987) no. 1, pp. 179-230 | Article | MR 885783 | Zbl 0641.10026
[15] Oeuvres, collected papers, Springer-Verlag, Tome vol. III (1986), pp. 1972-1984 | Zbl 0849.01049
[16] Introduction to the Arithmetic Theory of Automorphic Functions, Iwana Shoten Publishers and Princeton University Press (1971) | MR 1291394 | Zbl 0221.10029
[17] Shimura integrals of cusp forms, Math. USSR Isvestija, Tome 16 (1981), pp. 603-646 | Article | Zbl 0466.14014