Dans cet article, je traite des systèmes quantiques dont l’hamiltonien est non-hermitien mais dont les niveaux d’énergie sont tous réels et positifs. De telles théories doivent être symétriques sous , mais pas sous et séparément. Récemment, des systèmes quantiques avec de telles propriétés ont été étudiés en détail. Dans cet article, j’étends ces résultats aux théories des champs quantiques. Parmi les systèmes dont je parle, se trouvent les théories et . Toutes ces théories ont des propriétés inattendues et remarquables. Je décris les fonctions de Green qui apparaissent dans ces théories et je présente de nouveaux résultats concernant les états liés, la renormalisation et les calculs non-perturbatifs.
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under , but not symmetric under and separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are and theories. These theories all have unexpected and remarkable properties. I discuss the Green’s functions for these theories and present new results regarding bound states, renormalization, and nonperturbative calculations.
@article{AIF_2003__53_4_997_0, author = {Bender, Carl M.}, title = {Properties of non-hermitian quantum field theories}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {997-1008}, doi = {10.5802/aif.1971}, mrnumber = {2033507}, zbl = {1069.81030}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_4_997_0} }
Bender, Carl M. Properties of non-hermitian quantum field theories. Annales de l'Institut Fourier, Tome 53 (2003) pp. 997-1008. doi : 10.5802/aif.1971. http://gdmltest.u-ga.fr/item/AIF_2003__53_4_997_0/
[8] Quantum Complex Henon-Heiles Potentials, Phys. Lett. A, Tome 281 (2001), pp. 311-316 | Article | MR 2046920 | Zbl 0984.81042
[1] PCT, Benjamin, New York, Spin \& Statistics and all that (1964) | MR 161603 | Zbl 0135.44305
[2] A New Perturbative Approach to Nonlinear Problems, J. Math. Phys, Tome 30 (1989), pp. 1447-1455 | Article | MR 1002247 | Zbl 0684.34008
[3] Real Spectra in Non-Hermitian hamiltonians Having PT Symmetry, Phys. Rev. Lett., Tome 80 (1998), pp. 5243-5246 | Article | MR 1627442 | Zbl 0947.81018
[4] PT-Symmetric Quantum Mechanics, J. Math. Phys., Tome 40 (1999), pp. 2201-2229 | Article | MR 1686605 | Zbl 1057.81512
[4] Eigenvalues of complex Hamiltonians with PT-symmetry, Phys. Lett. A, Tome 250 (1998), pp. 29-32 | Article | MR 1742960
[5] The ODE/IM correspondence PT-symmetric quantum mechanics, J. Phys. A, Math. Gen., Tome 34 (2002), p. 391-400 and 5679--5704 | MR 1857169
[5] On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys., Tome 229 (2002), pp. 543-564 | Article | MR 1924367 | Zbl 1017.34083
[6] Calculation of the One-Point Green's Function for a - Quantum Field Theory, Phys. Rev. D, Tome 63 (2001), p. 45001-1--45001-10 | Article
[7] Bound States of Non-Hermitian Quantum Field Theories, Phys. Lett. A, Tome 291 (2001), pp. 197-202 | Article | MR 1876901 | Zbl 0983.81045
[9] Two-Point Green's Function in PT-Symmetric Theories, Phys. Lett. A, Tome 302 (2002), pp. 286-290 | Article | MR 1958668 | Zbl 0998.81023
[10] Complex Extension of Quantum Mechanics, Tome quant-ph 0208076 (2002) | MR 1950305
[11] Generalized Symmetry and Real Spectra, J. Phys. A, Math. Gen., Tome 35 (2002), pp. 467-471 | Article | MR 1928842 | Zbl 1066.81537
[11] Space of state vectors in PT-symmetric quantum mechanics, J. Phys. A, Tome 35 (2002), pp. 1709-1718 | Article | MR 1891621 | Zbl 1010.81019