On the Jung method in positive characteristic
[Sur la méthode de Jung en caractéristique positive]
Piltant, Olivier
Annales de l'Institut Fourier, Tome 53 (2003), p. 1237-1258 / Harvested from Numdam

Soit X ¯ un germe de surface normale d’anneau local R ¯ revêtant un germe de surface régulière X d’anneau local R de caractéristique p>0. Étant donnée une extension d’anneaux de valuation W/V dominant birationnellement R ¯/R, nous étudions l’existence d’une nouvelle paire d’anneaux locaux R ¯ ' /R ' dominant birationnellement R ¯/R, telle que R ' soit régulier et que R ¯ ' n’ait que des singularités toriques. Cette dernière est construite lorsque W/V est sans défaut ou lorsque le degré [W:V] est p.

Let X ¯ be a germ of normal surface with local ring R ¯ covering a germ of regular surface X with local ring R of characteristic p>0. Given an extension of valuation rings W/V birationally dominating R ¯/R, we study the existence of a new such pair of local rings R ¯ ' /R ' birationally dominating R ¯/R, such that R ' is regular and R ¯ ' has only toric singularities. This is achieved when W/V is defectless or when [W:V] is equal to p

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1978
Classification:  13A18,  14E22,  14J17
Mots clés: valuations, revêtements, résolution des singularités
@article{AIF_2003__53_4_1237_0,
     author = {Piltant, Olivier},
     title = {On the Jung method in positive characteristic},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1237-1258},
     doi = {10.5802/aif.1978},
     mrnumber = {2033514},
     zbl = {1078.14018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_4_1237_0}
}
Piltant, Olivier. On the Jung method in positive characteristic. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1237-1258. doi : 10.5802/aif.1978. http://gdmltest.u-ga.fr/item/AIF_2003__53_4_1237_0/

[1] S. Abhyankar On the ramification of algebraic functions, Amer. J. Math, Tome 77 (1955), pp. 575-592 | Article | MR 71851 | Zbl 0064.27501

[2] S. Abhyankar Local uniformization on algebraic surfaces over ground fields of characteristic p0, Ann. Math., Tome 63 (1956), pp. 491-526 | Article | MR 78017 | Zbl 0108.16803

[3] S. Abhyankar On the valuations centered in a local domain, Amer. J. Math, Tome 78 (1956), pp. 321-348 | Article | MR 82477 | Zbl 0074.26301

[4] S. Abhyankar Simultaneous resolution for algebraic surfaces, Amer. J. Math, Tome 78 (1956), pp. 761-790 | Article | MR 82722 | Zbl 0073.37902

[5] S. Abhyankar Ramification theoretic methods in algebraic geometry, Princeton University Press, Annals of Math. Studies, Tome 43 (1959) | MR 105416 | Zbl 0101.38201

[6] S. Abhyankar Tame Coverings and fundamental groups of algebraic varieties, Amer. J. Math, Tome 81 (1959), pp. 46-94 | Article | MR 104675 | Zbl 0100.16401

[7] D. Abramovich; A. J. De Jong Smoothness, semistability and toroidal geometry, J. Alg. Geom., Tome 6 (1997), pp. 789-801 | MR 1487237 | Zbl 0906.14006

[8] F. Bogomolov; T. Pantev Weak Hironaka theorem, Math. Res. Lett., Tome 3 (1996), pp. 299-307 | MR 1397679 | Zbl 0869.14007

[9] S.D. Cutkosky Local factorization and monomialization of morphisms, Astérisque, Tome 260 (1999) | MR 1734239 | Zbl 0941.14001

[10] S.D. Cutkosky Simultaneous resolution of singularities, Proc. Amer. Math. Soc, Tome 128 (2000), pp. 1905-1910 | Article | MR 1646312 | Zbl 0974.14010

[11] S.D. Cutkosky Generically finite morphisms and simultaneous resolution of singularities (2001) (to appear in Contemporary Math) | MR 2011766 | Zbl 1045.14008

[12] S.D. Cutkosky; O. Piltant Monomial resolutions of morphisms of algebraic surfaces. In honor of R. Hartshorne, Comm. Alg, Tome 28 (2000) no. 12, pp. 5935-5959 | Article | MR 1808613 | Zbl 1003.14004

[13] S.D. Cutkosky; O. Piltant Ramification of valuations (2002) (to appear in Adv. Math.) | MR 2038546 | Zbl 1105.14015

[14] A. Grothendieck Revêtements étales et groupe fondamental, Springer Verlag, Lect. Notes Math., Tome 224 (1971) | MR 354651 | Zbl 0234.14002

[15] A. Grothendieck; J.P. Murre The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Springer-Verlag, Lect. Notes Math, Tome 208 (1971) | MR 316453 | Zbl 0216.33001

[16] R. Hartshorne Algebraic geometry, Springer-Verlag, Graduate Texts in Math, Tome 52 (1977) | MR 463157 | Zbl 0367.14001

[17] A. J. De Jong Smoothness, semistability and alterations, Publ. Math. IHES, Tome 83 (1996), pp. 51-93 | Numdam | Zbl 0916.14005

[18] H. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle, Journal für Mathematik, Tome 133 (1908), pp. 289-314 | JFM 39.0493.01

[19] G. Kempf; F. Knudsen; D. Mumford; B. Saint-Donat Toroidal embeddings I, Springer Verlag, Lect. Notes Math., Tome 339 (1973) | MR 335518 | Zbl 0271.14017

[20] H. Knaf; And F.V. Kuhlmann Abhyankar places admit local uniformization in any characteristic (2001) (preprint Valuation Theory homepage, http://math.usask.ca) | Zbl 1159.13301

[21] W. Krull Galoissche Theorie bewerteter Körper, Sitzungsbereichte der Bayerschen Akademie der Wissenschaften, München (1930), pp. 225-238 | JFM 56.0141.02

[22] F.V. Kuhlmann On local uniformization in arbitary characteristic I (2000) (preprint Valuation Theory homepage, http://math.usask.ca) | MR 1748629

[23] J. Lipman Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES, Tome 36 (1969), pp. 195-279 | Numdam | MR 276239 | Zbl 0181.48903

[24] J. Lipman Introduction to resolution of singularities, Algebraic Geometry, Arcata, 1974 (AMS Proc. Symp. Pure Math) Tome 29 (1975), pp. 187-230 | Zbl 0306.14007

[25] M. Spivakovsky Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math, Tome 131 (1990), pp. 411-491 | Article | MR 1053487 | Zbl 0719.14005

[26] O. Zariski; P. Samuel Commutative Algebra I, Springer Verlag, Graduate Texts in Math, Tome 28 (1958) | Zbl 0313.13001

[27] O. Zariski; P. Samuel Commutative Algebra II, Van Nostrand, Princeton, The Univ. Series in Higher Math. (1960) | MR 120249 | Zbl 0121.27801