The level crossing problem in semi-classical analysis I. The symmetric case
[Le problème du croisement générique en analyse semi-classique I. Le cas symétrique]
Colin de Verdière, Yves
Annales de l'Institut Fourier, Tome 53 (2003), p. 1023-1054 / Harvested from Numdam

Nous décrivons une forme normale microlocale pour un système symétrique d'équations pseudo-différentielles dont le symbole principal est à valeurs matrices symétriques réelles ayant un croisement générique de valeurs propres. Nous utilisons cette forme normale pour décrire de façon précise les solutions mucrolocales.

We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1973
Classification:  35C20,  35Q40,  35S30
Mots clés: conversion de modes, polarisation, approximation de Born-Oppenheimer, équations de Maxwell, croisements de valeurs propres, systèmes d'opérateurs pseudo-différentiels, analyse semi-classique, variétés lagrangiennes, propagation des singularités, états coh
@article{AIF_2003__53_4_1023_0,
     author = {Colin de Verdi\`ere, Yves},
     title = {The level crossing problem in semi-classical analysis I. The symmetric case},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1023-1054},
     doi = {10.5802/aif.1973},
     mrnumber = {2033509},
     zbl = {02014671},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_4_1023_0}
}
Colin de Verdière, Yves. The level crossing problem in semi-classical analysis I. The symmetric case. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1023-1054. doi : 10.5802/aif.1973. http://gdmltest.u-ga.fr/item/AIF_2003__53_4_1023_0/

[1] M. Abramowitz; I. Stegun Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publication Inc., New York (1970) | MR 1225604

[2] V. Arnold Singularities of Caustics and Wave Fronts, Kluwer (1990) | MR 1151185 | Zbl 0734.53001

[3] V. Arnold On the interior scattering of waves, defined by hyperbolic variational principles, J. Geom. Phys., Tome 5 (1988), pp. 305-315 | Article | MR 1048504 | Zbl 0699.35199

[4] J.E. Avron; A. Gordon Born-Oppenheimer wave function near level crossing, Phys. Rev. A, Tome 62-06254 (2000)

[5] M. Born; R. Oppenheimer Zür Quantentheorie der Molekeln, Annal. Phys., Tome 84 (1927), pp. 457-484 | Article | JFM 53.0845.04

[6] L. Boutet De Monvel; V. Guillemin The Spectral Theory of Toeplitz Operators, Princeton Univ. Press (1981) | MR 620794 | Zbl 0469.47021

[7] P. Braam; H. Duistermaat Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S., Tome 4 (1993) no. 4, pp. 407-421 | Article | MR 1252985 | Zbl 0802.35176

[8] Y. Colin De Verdière Singular Lagrangian manifolds and semi-classical analysis, Duke Math. J., Tome 116 (2003), pp. 263-298 | Article | MR 1953293 | Zbl 01911548

[9] Y. Colin De Verdière Spectres de Graphes, Soc. Math. France (1998) | MR 1652692 | Zbl 0913.05071

[10] Y. Colin De Verdière The level crossing problem in semi-classical analysis. II. The Hermitian case (2003) (Prépublication Institut Fourier no 603)

[11] Y. Colin De Verdière; M. Lombardi; J. Pollet The microlocal Landau-Zener formula, Ann. IHP (Phys. théorique), Tome 71 (1999), pp. 95-127 | Numdam | MR 1704655 | Zbl 0986.81027

[12] Y. Colin De Verdière; B. Parisse Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. in PDE, Tome 19 (1994), pp. 1535-1563 | Article | MR 1294470 | Zbl 0819.35116

[13] Y. Colin De Verdière; J. Vey Le lemme de Morse isochore, Topology, Tome 18 (1979), pp. 283-293 | Article | MR 551010 | Zbl 0441.58003

[14] J.-M. Combes On the Born-Oppenheimer approximation, International Symposium on Mathematical Problems in Theoretical Physics, Kyoto Univ., Kyoto (Lecture Notes in Phys.) Tome 39 (1975), pp. 467-471 | Zbl 0372.47026

[15] J.-M. Combes; R. Seiler Spectral properties of atomic and molecular systems, Quantum dynamics of molecules, Univ. Cambridge (Proc. NATO Adv. Study Inst.) (1979), pp. 435-482

[16] M. Combescure; D. Robert Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Tome 14 (1997), pp. 377-404 | MR 1461126 | Zbl 0894.35026

[17] P. Exner; A. Joye Avoided Crossings in Mesoscopic Systems: Electron Propagation on a Non-uniform Magnetic Cylinder, J. Math. Phys., Tome 42 (2001), pp. 4707-4738 | Article | MR 1855092 | Zbl 1017.81050

[18] C. Emmrich; A. Weinstein Geometry of the transport Equation in Multicomponent WKB Approximations, Commun. Math. Phys., Tome 176 (1996), pp. 701-711 | Article | MR 1376438 | Zbl 0848.34039

[19] F. Faure; B. Zhilinskii Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters, Tome 85 (2000), pp. 960-963 | Article

[20] F. Faure; B. Zhilinskii Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., Tome 55 (2001), pp. 219-239 | Article | MR 1843445 | Zbl 0981.81028

[21] C. Fermanian-Kammerer A non-commutative Landau-Zener formula (2002) (Prépublication Université de Cergy-Pontoise, 01/02, 1-34) | Zbl 1050.35093

[22] C. Fermanian-Kammerer Une formule de Landau-Zener pour un croisement de codimension 2, Séminaire Équations aux dérivées partielles, École Polytechnique, Tome exposé XXI, 9/04 (2002)

[23] C. Fermanian-Kammerer; C. Lasser Wigner measures and codimension two crossings (2002) (Preprint mp-arc, 02-186) | MR 1952198 | Zbl 1061.81078

[24] W. Flynn; R. Littlejohn Normal forms for linear mode conversion and Landau-Zener transitions in one dimension, Ann. Physics, Tome 234 (1994) no. 2, pp. 334-403 | Article | MR 1289934

[25] W. Flynn; R. Littlejohn Semi-classical theory of spin-orbit coupling, Phys. Rev. A, Tome 45 (1992), pp. 7697-7717 | Article | MR 1167156

[26] G. Folland Harmonic Analysis on Phase Space, Princeton Univ. Press (1989) | MR 983366 | Zbl 0682.43001

[27] P. Gérard; C. Fermanian-Kammerer Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France, Tome 130 (2002), pp. 123-168 | Numdam | MR 1906196 | Zbl 0996.35004

[28] P. Gérard; C. Fermanian-Kammerer A Landau-Zener formula for non-degenerated involutive codimension 3 crossings (sept. 2002) (Preprint) | MR 2007256 | Zbl 1049.81029

[29] V. Guillemin Symplectic spinors and PDE, Géométrie Symplectique et Physique mathématique (Colloque CNRS Aix-en-Provence) (1974)

[30] G. Hagedorn Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS, Tome 536 (1994) | MR 1234882 | Zbl 0833.92025

[31] G. Hagedorn Higher Order Corrections to the Time-Dependent Born-Oppenheimer Approximation. I: Smooth Potentials, Ann. Math., Tome 124 (1986), pp. 571-590 | Article | MR 866709 | Zbl 0619.35094

[32] G. Hagedorn Raising and lowering operators for semiclassical wave packets, Ann. Phys., Tome 269 (1998), pp. 77-104 | Article | MR 1650826 | Zbl 0929.34067

[33] G. Hagedorn; A. Joye Landau-Zener Transitions through small Electronic Eigenvalues Gaps in the Born-Oppenheimer Approximation, Ann. IHP (Phys. théorique), Tome 68 (1998), pp. 85-134 | Numdam | MR 1618922 | Zbl 0915.35090

[34] G. Hagedorn; A. Joye Molecular Propapagation through small avoided Crossings of Electron Energy Levels, Rev. Math. Phys., Tome 11 (1999), pp. 41-101 | Article | MR 1668071 | Zbl 0965.81138

[35] R. Halberg Localized coupling between surface- and bottom-intensified flow over topography, J. Phys. Oceanogr., Tome 27 (1997), pp. 977-999 | Article

[36] P. Holm Generic elastic Media, Physica Scripta, Tome 44 (1992), pp. 122-127 | Article

[37] A. Joye Proof of the Landau-Zener Formula, Asymptotic Analysis, Tome 9 (1994), pp. 209-258 | MR 1295294 | Zbl 0814.35109

[38] N. Kaidi; M. Rouleux Forme normale d'un hamiltonien à deux niveaux près d'un point de branchement (limite semi-classique), C. R. Acad. Sci. Paris, Sér. I, Tome 317 (1993) no. 4, pp. 359-364 | MR 1235449 | Zbl 0797.58083

[39] M. Karasev; Y. Vorobjev Integral representations over isotropic submanifolds and equations of zero curvature, Adv. Math., Tome 135 (1998), pp. 220-286 | Article | MR 1620834 | Zbl 0926.53030

[40] M. Klein; A. Martinez; R. Seiler; X. Wang On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory, Commun. Math. Phys., Tome 143 (1992), pp. 607-639 | MR 1145603 | Zbl 0754.35099

[41] M. Kline; I. Kay Electromagnetic theory and geometrical optics., Interscience Publishers (1965) | MR 180094 | Zbl 0123.23602

[42] L. Landau Zur Theorie der Energieübertragung. II., Z. Phys. Sowjet., Tome 2 (1932), pp. 46-51 | Zbl 0005.27801

[42] L. Landau Collected papers, Pergamon Press (1965)

[43] L. Landau; E. Lifchitz Mécanique quantique (théorie non relativiste), Mir, Moscou (1967) | Zbl 0148.43806

[44] A. Melin; J. Sjöstrand Fourier integral operators with complex valued phase functions, Lecture Notes in Math. (1975) no. 459 | Article | MR 431289 | Zbl 0306.42007

[45] R. Melrose; G. Uhlmann Microlocal structure of involutive conical refraction, Duke Math. J., Tome 46 (1979), pp. 571-582 | Article | MR 544247 | Zbl 0422.58026

[46] J. Moser On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math., Tome 11 (1958), pp. 257-271 | Article | MR 96021 | Zbl 0082.08003

[47] E. Nelson Topics in dynamics. I: Flows, Princeton Univ. Press (1969) | MR 282379 | Zbl 0197.10702

[48] P. Pettersson WKB expansions for systems of Schrödinger operators with crossing eigenvalues, Asymptotic Anal., Tome 14 (1997), pp. 1-48 | MR 1437193 | Zbl 0885.35104

[49] J. Vanneste Mode Conversion for Rossby Waves over Topography, J. Phys. Oceanogr., Tome 31 (2001), pp. 1922-1925 | Article

[50] J. Von Neumann; E. Wigner Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Zeit., Tome 30 (1929), pp. 467-470 | JFM 55.0520.05

[51] A. Weinstein Symplectic manifolds and their Lagrangian submanifolds., Adv. Math., Tome 6 (1971), pp. 329-346 | Article | MR 286137 | Zbl 0213.48203

[52] C. Zener Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond., Tome 137 (1932), pp. 696-702 | Article | Zbl 0005.18605