Nous expliquerons comment de nouvelles solutions algébriques de la sixième équation de Painlevé proviennent des groupes complexes de réflexion, prolongeant les résultats de Hitchin et de Dubrovin--Mazzocco pour les groupes réels de réflexion. Le problème de trouver des formules explicites pour ces solutions sera traité ailleurs.
We will explain how some new algebraic solutions of the sixth Painlevé equation arise from complex reflection groups, thereby extending some results of Hitchin and Dubrovin-- Mazzocco for real reflection groups. The problem of finding explicit formulae for these solutions will be addressed elsewhere.
@article{AIF_2003__53_4_1009_0, author = {Boalch, Philip}, title = {Painlev\'e equations and complex reflections}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {1009-1022}, doi = {10.5802/aif.1972}, mrnumber = {2033508}, zbl = {1081.34086}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_4_1009_0} }
Boalch, Philip. Painlevé equations and complex reflections. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1009-1022. doi : 10.5802/aif.1972. http://gdmltest.u-ga.fr/item/AIF_2003__53_4_1009_0/
[1] Symplectic manifolds and isomonodromic deformations, Adv. in Math, Tome 163 (2001), pp. 137-205 | Article | MR 1864833 | Zbl 1001.53059
[2] G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. (2002) no. 22, pp. 1129-1166 | Article | MR 1904670 | Zbl 1003.58028
[3] Towards spetses. I, Dedicated to the memory of Claude Chevalley (Transform. Groups) Tome 4, no 2-3 (1999), pp. 157-218 | Zbl 0972.20024
[4] Quantum coadjoint action, J. Amer. Math. Soc, Tome 5 (1992) no. 1, pp. 151-189 | Article | MR 1124981 | Zbl 0747.17018
[5] Algebraic and geometric isomonodromic deformations, J. Differential Geom., Tome 59 (2001) no. 1, pp. 33-85 | MR 1909248 | Zbl 1043.34098
[6] Painlevé transcendents in two-dimensional topological field theory, The Painlevé property, Springer, New York (1999), pp. 287-412 | Zbl 1026.34095
[7] Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math., Tome 141 (2000) no. 1, pp. 55-147 | Article | MR 1767271 | Zbl 0960.34075
[8] Frobenius manifolds, Gauge Theory and Symplectic Geometry, Kluwer, NATO ASI Series C: Maths \& Phys, Tome vol. 488 (1995) | Zbl 0867.53027
[9] Poncelet polygons and the Painlevé equations, Geometry and analysis (Bombay, 1992) (Tata Inst. Fund. Res., Bombay) Tome MR 97d:32042 (1995), pp. 151-185 | Zbl 0893.32018
[10] Geometrical aspects of Schlesinger's equation, J. Geom. Phys., Tome 23 (1997) no. 3-4, pp. 287-300 | Article | MR 1484592 | Zbl 0896.53011
[11] Quartic curves and icosahedra, talk at Edinburgh, September (1998)
[12] Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., Tome 18 (1982) no. 3, pp. 1137-1161 | Article | MR 688949 | Zbl 0535.34042
[13] Monodromy preserving deformations of linear differential equations with rational coefficients II, Physica 2D (1981), pp. 407-448 | MR 625446
[14] Density of monodromy actions on non-abelian cohomology (e-print, math.AG/0101223) | Zbl 1098.14012
[15] Finite unitary reflection groups, Canadian J. Math., Tome 6 (1954), pp. 274-304 | Article | MR 59914 | Zbl 0055.14305
[16] Towards a Schubert calculus for complex reflection groups (Math. Proc. Camb. Phil. Soc., to appear, www.dpmms.cam.ac.uk/ bt219/hall.dvi.gz) | MR 1937794 | Zbl 1045.05088