Painlevé equations and complex reflections
[Équations de Painlevé et réflexions complexes]
Boalch, Philip
Annales de l'Institut Fourier, Tome 53 (2003), p. 1009-1022 / Harvested from Numdam

Nous expliquerons comment de nouvelles solutions algébriques de la sixième équation de Painlevé proviennent des groupes complexes de réflexion, prolongeant les résultats de Hitchin et de Dubrovin--Mazzocco pour les groupes réels de réflexion. Le problème de trouver des formules explicites pour ces solutions sera traité ailleurs.

We will explain how some new algebraic solutions of the sixth Painlevé equation arise from complex reflection groups, thereby extending some results of Hitchin and Dubrovin-- Mazzocco for real reflection groups. The problem of finding explicit formulae for these solutions will be addressed elsewhere.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1972
Classification:  34M55,  20H15,  55N99
Mots clés: équations de Painlevé, déformations isomonodromiques, cohomologie non abélienne, réflections complexes
@article{AIF_2003__53_4_1009_0,
     author = {Boalch, Philip},
     title = {Painlev\'e equations and complex reflections},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {1009-1022},
     doi = {10.5802/aif.1972},
     mrnumber = {2033508},
     zbl = {1081.34086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_4_1009_0}
}
Boalch, Philip. Painlevé equations and complex reflections. Annales de l'Institut Fourier, Tome 53 (2003) pp. 1009-1022. doi : 10.5802/aif.1972. http://gdmltest.u-ga.fr/item/AIF_2003__53_4_1009_0/

[1] P.P. Boalch Symplectic manifolds and isomonodromic deformations, Adv. in Math, Tome 163 (2001), pp. 137-205 | Article | MR 1864833 | Zbl 1001.53059

[2] P.P. Boalch G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. (2002) no. 22, pp. 1129-1166 | Article | MR 1904670 | Zbl 1003.58028

[3] M. Broué; G. Malle; J. Michel Towards spetses. I, Dedicated to the memory of Claude Chevalley (Transform. Groups) Tome 4, no 2-3 (1999), pp. 157-218 | Zbl 0972.20024

[4] C. De Concini; V. G. Kac; C. Procesi Quantum coadjoint action, J. Amer. Math. Soc, Tome 5 (1992) no. 1, pp. 151-189 | Article | MR 1124981 | Zbl 0747.17018

[5] C. F. Doran Algebraic and geometric isomonodromic deformations, J. Differential Geom., Tome 59 (2001) no. 1, pp. 33-85 | MR 1909248 | Zbl 1043.34098

[6] B. Dubrovin Painlevé transcendents in two-dimensional topological field theory, The Painlevé property, Springer, New York (1999), pp. 287-412 | Zbl 1026.34095

[7] B. Dubrovin; M. Mazzocco Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math., Tome 141 (2000) no. 1, pp. 55-147 | Article | MR 1767271 | Zbl 0960.34075

[8] N. J. Hitchin Frobenius manifolds, Gauge Theory and Symplectic Geometry, Kluwer, NATO ASI Series C: Maths \& Phys, Tome vol. 488 (1995) | Zbl 0867.53027

[9] N. J. Hitchin Poncelet polygons and the Painlevé equations, Geometry and analysis (Bombay, 1992) (Tata Inst. Fund. Res., Bombay) Tome MR 97d:32042 (1995), pp. 151-185 | Zbl 0893.32018

[10] N. J. Hitchin Geometrical aspects of Schlesinger's equation, J. Geom. Phys., Tome 23 (1997) no. 3-4, pp. 287-300 | Article | MR 1484592 | Zbl 0896.53011

[11] N. J. Hitchin Quartic curves and icosahedra, talk at Edinburgh, September (1998)

[12] M. Jimbo Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci., Tome 18 (1982) no. 3, pp. 1137-1161 | Article | MR 688949 | Zbl 0535.34042

[13] M. Jimbo; T. Miwa Monodromy preserving deformations of linear differential equations with rational coefficients II, Physica 2D (1981), pp. 407-448 | MR 625446

[14] L. Katzarkov; T. Pantev; C. Simpson Density of monodromy actions on non-abelian cohomology (e-print, math.AG/0101223) | Zbl 1098.14012

[15] G. C. Shephard; J. A. Todd Finite unitary reflection groups, Canadian J. Math., Tome 6 (1954), pp. 274-304 | Article | MR 59914 | Zbl 0055.14305

[16] B. Totaro Towards a Schubert calculus for complex reflection groups (Math. Proc. Camb. Phil. Soc., to appear, www.dpmms.cam.ac.uk/ bt219/hall.dvi.gz) | MR 1937794 | Zbl 1045.05088