Soit , un domaine à bord et un compact tel que soit connexe. On étudie l’extension holomorphe des fonctions CR définies sur à des sous-ensembles de . On dit que est CR-convexe si son enveloppe -convexe, , vérifie ( désigne l’espace des fonctions holomorphes sur et continues sur ). Le théorème principal de cet article prouve l’extension holomorphe à , si est CR-convexe.
Let , be a domain with -boundary and be a compact set such that is connected. We study univalent analytic extension of CR-functions from to parts of . Call CR-convex if its -convex hull, , satisfies ( denoting the space of functions, which are holomorphic on and continuous up to ). The main theorem of the paper gives analytic extension to , if is CR- convex.
@article{AIF_2003__53_3_847_0, author = {Laurent-Thi\'ebaut, Christine and Porten, Egmon}, title = {Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {847-857}, doi = {10.5802/aif.1962}, mrnumber = {2008443}, zbl = {1035.32020}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_3_847_0} }
Laurent-Thiébaut, Christine; Porten, Egmon. Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity. Annales de l'Institut Fourier, Tome 53 (2003) pp. 847-857. doi : 10.5802/aif.1962. http://gdmltest.u-ga.fr/item/AIF_2003__53_3_847_0/
[1] Analytic sets, Dordrecht (1989)
[2] Radó's theorem for CR mappings of hypersurfaces, Russian Acad. Sci. Sb. Math, Tome 82 (1995), pp. 243-259 | Article | MR 1280401 | Zbl 0848.32011
[3] Removable singularities in the boundary, Contributions to Complex Analysis and Analytic Geometry, Vieweg (Aspects of Mathematics) Tome E26 (1994), pp. 43-104 | Zbl 0820.32008
[4] Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, Tome 22 (1968), pp. 275-314 | Numdam | MR 237816 | Zbl 0159.37502
[5] Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z, Tome 218 (1995), pp. 143-157 | Article | MR 1312583 | Zbl 0816.32011
[6] Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Analysis, Tome 6 (1996), pp. 555-611 | MR 1601405 | Zbl 0917.32007
[7] Hulls and Analytic Extension from non-pseudoconvex Boundaries (19, Feb. 2002) (Preprint, Uppsala (U.U.D.M.-reports))
[8] Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (IV), Tome 150 (1988), pp. 1-21 | Article | MR 946033 | Zbl 0646.32010
[9] A theorem on holomorphic extension of CR-functions, Pacific J. Math, Tome 128 (1986), pp. 177-191 | MR 850675 | Zbl 0597.32014
[10] Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat, Tome 32 (1994), pp. 455-473 | Article | MR 1318542 | Zbl 0823.32004
[11] Morse Theory, Princeton, N.J. (1963) | MR 163331 | Zbl 0108.10401
[12] On Gleason's decomposition for , Math. Zeitschr, Tome 194 (1987), pp. 565-571 | Article | MR 881710 | Zbl 0595.32019
[13] Hebbare Singularitäten von CR-Funktionen und analytische Fortsetzung von Teilen nicht-pseudokonvexer Ränder, Berlin, Dissertation (1997)
[14] Analytic continuation of functions of several complex variables, Proc. Royal Soc. Edinburgh, Tome 89A (1981), pp. 63-74 | Article | MR 628129 | Zbl 0491.32007
[15] Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc, Tome 180 (1973), pp. 171-188 | Article | MR 321133 | Zbl 0274.58002
[16] Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe , Invent. Math, Tome 83 (1986), pp. 583-592 | Article | MR 827369 | Zbl 0586.32016
[17] Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr, Tome 118 (1990), pp. 403-450 | Numdam | MR 1090408 | Zbl 0742.58053