L'ensemble des classes de conjugaison apparaissant dans un produit de classes de conjugaison d'un groupe de Lie 1-connexe compact peut être identifié avec un polytope convexe dans une chambre pour le groupe affine de Weyl. Nous démontrons que les inégalités linéaires définissant ce polytope correspondent aux invariants de Gromov- Witten pour les variétés de drapeaux généralisées. Ceci généralise les résultats de Agnihotri, du deuxième auteur et de Belkale sur les valeurs propres d'un produit de matrices unitaires et la cohomologie quantique des grassmanniennes.
The set of conjugacy classes appearing in a product of conjugacy classes in a compact, -connected Lie group can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety , where is the complexification of and is a maximal parabolic subgroup. This generalizes the results for of Agnihotri and the second author and Belkale on the eigenvalues of a product of unitary matrices and quantum cohomology of Grassmannians.
@article{AIF_2003__53_3_713_0, author = {Teleman, Constantin and Woodward, Christopher}, title = {Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {713-748}, doi = {10.5802/aif.1957}, mrnumber = {2008438}, zbl = {1041.14025}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_3_713_0} }
Teleman, Constantin; Woodward, Christopher. Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants. Annales de l'Institut Fourier, Tome 53 (2003) pp. 713-748. doi : 10.5802/aif.1957. http://gdmltest.u-ga.fr/item/AIF_2003__53_3_713_0/
[1] Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett, Tome 5-6 (1998), pp. 817-836 | MR 1671192 | Zbl 1004.14013
[2] Lie group valued moment maps, J. Differential Geom, Tome 48 (1998) no. 3, pp. 445-495 | MR 1638045 | Zbl 0948.53045
[3] The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London, Ser. A, Tome 308 (1982), pp. 523-615 | MR 702806 | Zbl 0509.14014
[4] Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J (2), Tome 53 (2001) no. 3, pp. 337-367 | Article | MR 1844373 | Zbl 01695159
[5] Un lemme de descente, C. R. Acad. Sci. Paris, Sér. I Math, Tome 320 (1995) no. 3, pp. 335-340 | MR 1320381 | Zbl 0852.13005
[6] The Picard group of the moduli of G-bundles on a curve (Compositio Math., to appear) | MR 1626025 | Zbl 0976.14024
[7] Local systems on for a finite set, Compositio Math, Tome 129 (2001) no. 1, pp. 67-86 | Article | MR 1856023 | Zbl 1042.14031
[8] Coadjoint orbits, moment polytopes and the Hilbert-Mumford criterion, J. Amer. Math. Soc, (electronic), Tome 13 (2000) no. 2, pp. 433-466 | MR 1750957 | Zbl 0979.53092
[9] Moduli of parabolic G-bundles on curves, Math. Z, Tome 202 (1989) no. 2, pp. 161-180 | Article | MR 1013082 | Zbl 0686.14012
[10] Parabolic bundles as orbifold bundles, Duke Math. J, Tome 88 (1997) no. 2, pp. 305-325 | Article | MR 1455522 | Zbl 0955.14010
[11] A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math, Tome 9 (1998) no. 5, pp. 523-533 | Article | MR 1644048 | Zbl 0939.14015
[12] Representations of orbifold groups and parabolic bundles, Comment. Math. Helvetici, Tome 66 (1991), pp. 389-447 | Article | MR 1120654 | Zbl 0758.57013
[13] The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom, Tome 36 (1992) no. 3, pp. 699-746 | MR 1189501 | Zbl 0785.58014
[14] The Yang-Mills flow near the boundary of Teichmüller space, Math. Ann, Tome 318 (2000) no. 1, pp. 1-42 | Article | MR 1785574 | Zbl 0997.53046
[15] Variation of geometric invariant theory quotients, with an appendix by Nicolas Ressayre, Inst. Hautes Études Sci. Publ. Math, Tome 87 (1998), pp. 5-56 | Numdam | MR 1659282 | Zbl 1001.14018
[16] The geometry of four-manifolds., Oxford University Press, New York, Oxford Mathematical Monographs (1990) | MR 1079726 | Zbl 0820.57002
[17] B-structures on G-bundles and local triviality, Math. Res. Lett, Tome 2 (1995) no. 6, pp. 823-829 | MR 1362973 | Zbl 0874.14043
[18] Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc, Tome 282 (1984) no. 2, pp. 773-790 | Article | MR 732119 | Zbl 0603.57001
[19] K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math, Tome 146 (2001) no. 1, pp. 93-141 | Article | MR 1859019 | Zbl 1039.53099
[20] Stable -bundles and projective connections, J. Algebraic Geom, Tome 2 (1993) no. 3, pp. 507-568 | MR 1211997 | Zbl 0790.14019
[21] Notes on stable maps and quantum cohomology, Algebraic geometry--Santa Cruz 1995, Amer. Math. Soc, Providence, RI (1997), pp. 45-96 | Zbl 0898.14018
[22] Quantum products of Schubert classes (2001) (preprint) | MR 1837123
[23] Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math, Tome 96 (1992) no. 1, pp. 38-102 | Article | MR 1185787 | Zbl 0769.58009
[24] A theorem on compact semi-simple groups, J. Math. Soc. Japan, Tome 1 (1949), pp. 270-272 | Article | MR 33829 | Zbl 0041.36208
[25] Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math, Tome 79 (1957), pp. 121-138 | Article | MR 87176 | Zbl 0079.17001
[26] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math (1961) no. 8, pp. 222 pp | Numdam | MR 163909 | Zbl 0118.36206
[27] Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math (1961) no. 11, pp. 167 pp | Numdam | MR 163910
[28] Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, Graduate Texts in Mathematics, Tome volume 52 (1977) | MR 463157 | Zbl 0367.14001
[29] An equivariant version of Grauert's Oka principle, Invent. Math, Tome 119 (1995) no. 2, pp. 317-346 | Article | MR 1312503 | Zbl 0837.32004
[30] Stable pairs on curves and surfaces, J. Algebraic Geom, Tome 4 (1995) no. 1, pp. 67-104 | MR 1299005 | Zbl 0839.14023
[31] Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann, Tome 298 (1994), pp. 667-692 | Article | MR 1268599 | Zbl 0794.53017
[32] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), Tome 4 (1998) no. 3, pp. 419-445 | Article | MR 1654578 | Zbl 0915.14010
[33] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc, Tome 12 (1999) no. 4, pp. 1055-1090 | Article | MR 1671451 | Zbl 0944.05097
[34] Honeycombs II: Facets of the Littlewood-Richardson cone (to appear in Jour. Am. Math. Soc.)
[35] The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4), Tome 30 (1997) no. 4, pp. 499-525 | Numdam | MR 1456243 | Zbl 0918.14004
[36] Moduli of vector bundles on curves with parabolic structure, Math. Ann, Tome 248 (1980), pp. 205-239 | Article | MR 575939 | Zbl 0454.14006
[37] Hamiltonian loop group actions and Verlinde factorization, Journal of Differential Geometry, Tome 50 (1999), pp. 417-470 | MR 1690736 | Zbl 0949.37031
[38] Convex functions on symmetric spaces and geometric invariant theory for spaces of weighted configurations on flag manifolds (2000) (Preprint)
[39] The red book of varieties and schemes. Includes the Michigan Lectures (1974) on "curves and their Jacobians", with contributions by Enrico Arbarello, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome volume 1358 (1999) | MR 1748380 | Zbl 0945.14001
[40] Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay., Tome volume 51 (1978) | MR 546290 | Zbl 0411.14003
[41] Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J, Tome 84 (1996), pp. 217-235 | MR 1394754 | Zbl 0877.14031
[42] Lectures on quantum cohomology of G/P.M.I.T (1997)
[43] On the Yang-Mills heat equation in two and three dimensions, J. reine angew. Math, Tome 431 (1992), pp. 123-163 | MR 1179335 | Zbl 0760.58041
[44] Moduli for principal bundles over algebraic curves, I, Proc. Indian Acad. Sci. Math. Sci, Tome 106 (1996) no. 3, pp. 301-328 | Article | MR 1420170 | Zbl 0901.14007
[45] Moduli for principal bundles over algebraic curves, II, Proc. Indian Acad. Sci. Math. Sci, Tome 106 (1996) no. 4, pp. 421-449 | Article | MR 1425616 | Zbl 0901.14008
[46] Cohomologie galoisienne, Springer-Verlag, Berlin (1994) | MR 1324577 | Zbl 0812.12002
[47] Fibrés vectoriels sur les courbes algébriques, Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980, Société Mathématique de France, Paris (Astérisque) Tome volume 96 (1982) | Zbl 0517.14008
[48] Harmonic bundles on noncompact curves, J. Amer. Math. Soc, Tome 3 (1990) no. 3, pp. 713-770 | Article | MR 1040197 | Zbl 0713.58012
[49] Two notes on a finiteness problem in the representation theory of finite groups, Algebraic groups and Lie groups, Cambridge Univ. Press, Cambridge (Austral. Math. Soc. Lect. Ser) Tome volume 9 ; appendix by G. Martin Cram (1997), pp. 331-348 | Zbl 0874.22011
[50] Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math, Tome 134 (1998) no. 1, pp. 1-57 | Article | MR 1646586 | Zbl 0980.14025
[51] The quantization conjecture revisited, Ann. of Math. (2), Tome 152 (2000) no. 1, pp. 1-43 | Article | MR 1792291 | Zbl 0980.53102
[52] Geometric invariant theory and flips, J. Amer. Math. Soc, Tome 9 (1996) no. 3, pp. 691-723 | Article | MR 1333296 | Zbl 0874.14042
[53] Remarks on the cohomology of groups, Ann. of Math. (2), Tome 80 (1964), pp. 149-157 | Article | MR 169956 | Zbl 0192.12802
[54] On D. Peterson's comparison formula for Gromov-Witten invariants of (e-print, math.AG/0206073) | Zbl 1077.14085