Homology of gaussian groups
[Homologie des groupes gaussiens]
Dehornoy, Patrick ; Lafont, Yves
Annales de l'Institut Fourier, Tome 53 (2003), p. 489-540 / Harvested from Numdam

Nous décrivons de nouvelles méthodes combinatoires fournissant des résolutions explicites du module trivial par des G-modules libres lorsque G est le groupe de fractions d’un monoïde possédant suffisamment de ppcm (“monoïde localement gaussien”), et donc, permettant de calculer l’homologie de G. Nos constructions s’appliquent en particulier à tous les groupes d’Artin–Tits de type de Coexeter fini. D’un point de vue technique, les démonstrations reposent sur les propriétés des ppcm dans un monoïde.

We describe new combinatorial methods for constructing explicit free resolutions of by G-modules when G is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of G. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1951
Classification:  20J06,  18G35,  20M50,  20F36
Mots clés: résolution libre, résolution finie, homologie, homotopie de contact, groupes de tresses, groupes d'Artin
@article{AIF_2003__53_2_489_0,
     author = {Dehornoy, Patrick and Lafont, Yves},
     title = {Homology of gaussian groups},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {489-540},
     doi = {10.5802/aif.1951},
     mrnumber = {1990005},
     zbl = {1100.20036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_2_489_0}
}
Dehornoy, Patrick; Lafont, Yves. Homology of gaussian groups. Annales de l'Institut Fourier, Tome 53 (2003) pp. 489-540. doi : 10.5802/aif.1951. http://gdmltest.u-ga.fr/item/AIF_2003__53_2_489_0/

[1] S.I. Adyan Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR, Tome 36 ; 36 (1984 ; 1984) no. 1 ; 1, p. 25-34 ; 505-510 | MR 757642 | Zbl 0599.20044

[2] J. Altobelli; R. Charney A geometric rational form for Artin groups of FC type, Geometriae Dedicata, Tome 79 (2000), pp. 277-289 | Article | MR 1755729 | Zbl 1048.20020

[3] V.I. Arnold The cohomology ring of the colored braid group, Mat. Zametki, Tome 5 (1969), pp. 227-231 | MR 242196 | Zbl 0277.55002

[4] V.I. Arnold Toplogical invariants of algebraic functions II, Funkt. Anal. Appl., Tome 4 (1970), pp. 91-98 | Article | MR 276244 | Zbl 0239.14012

[5] D. Bessis The dual braid monoid (Preprint) | Numdam | MR 2032983

[6] M. Bestvina Non-positively curved aspects of Artin groups of finite type, Geometry \& Topology, Tome 3 (1999), pp. 269-302 | Article | MR 1714913 | Zbl 0998.20034

[7] J. Birman; K.H. Ko; S.J. Lee A new approach to the word problem in the braid groups, Advances in Math., Tome 139 (1998) no. 2, pp. 322-353 | Article | MR 1654165 | Zbl 0937.20016

[8] E. Brieskorn Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) (Springer Lect. Notes in Math.) Tome 317 (1973), pp. 21-44 | Numdam | Zbl 0277.55003

[9] E. Brieskorn; K. Saito Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Tome 17 (1972), pp. 245-271 | Article | MR 323910 | Zbl 0243.20037

[10] K.S. Brown Cohomology of groups, Springer (1982) | MR 672956 | Zbl 0584.20036

[11] H. Cartan; S. Eilenberg Homological Algebra, Princeton University Press, Princeton (1956) | MR 77480 | Zbl 0075.24305

[12] R. Charney Artin groups of finite type are biautomatic, Math. Ann., Tome 292 (1992) no. 4, pp. 671-683 | Article | MR 1157320 | Zbl 0736.57001

[13] R. Charney Geodesic automation and growth functions for Artin groups of finite type, Math. Ann., Tome 301 (1995) no. 2, pp. 307-324 | Article | MR 1314589 | Zbl 0813.20042

[14] R. Charney; J. Meier; K. Whittlesey Bestvina's normal form complex and the homology of Garside groups (Preprint) | MR 2057250 | Zbl 1064.20044

[15] A.H. Clifford; G.B. Preston The algebraic Theory of Semigroups, vol. 1, AMS Surveys, Tome 7 (1961) | Zbl 0111.03403

[16] F. Cohen Cohomology of braid spaces, Bull. Amer. Math. Soc., Tome 79 (1973), pp. 763-766 | Article | MR 321074 | Zbl 0272.55012

[17] F. Cohen Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., Tome 78 (1988), pp. 167-206 | MR 975079 | Zbl 0682.55011

[18] C. De Concini; M. Salvetti Cohomology of Artin groups, Math. Research Letters, Tome 3 (1996), p. 296-297 | MR 1386847 | Zbl 0870.57004

[19] C. De Concini; M. Salvetti; F. Stumbo The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl., Tome 78 (1997) no. 1, pp. 5-20 | Article | MR 1465022 | Zbl 0878.55003

[20] P. Dehornoy Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris, Tome 315 (1992), pp. 633-638 | MR 1183793 | Zbl 0790.20056

[21] P. Dehornoy Gaussian groups are torsion free, J. of Algebra, Tome 210 (1998), pp. 291-297 | Article | MR 1656425 | Zbl 0959.20035

[22] P. Dehornoy Braids and self-distributivity, Birkhäuser, Progress in Math., Tome vol. 192 (2000) | MR 1778150 | Zbl 0958.20033

[23] P. Dehornoy Groupes de Garside, Ann. Sci. École Norm. Sup., Tome 35 (2002), pp. 267-306 | Numdam | MR 1914933 | Zbl 1017.20031

[24] P. Dehornoy Complete group presentations (J. Algebra, to appear.) | MR 2004483

[25] P. Dehornoy; L. Paris Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Tome 79 (1999) no. 3, pp. 569-604 | Article | MR 1710165 | Zbl 1030.20021

[26] P. Deligne Les immeubles des groupes de tresses généralisés, Invent. Math., Tome 17 (1972), pp. 273-302 | Article | MR 422673 | Zbl 0238.20034

[27] E.A. Elrifai; H.R. Morton Algorithms for positive braids, Quart. J. Math. Oxford, Tome 45 (1994) no. 2, pp. 479-497 | Article | MR 1315459 | Zbl 0839.20051

[28] D. Epstein \& Al. Word Processing in Groups, Jones \& Bartlett Publ. (1992) | MR 1161694 | Zbl 0764.20017

[29] D.B. Fuks Cohomology of the braid group mod. 2, Funct. Anal. Appl., Tome 4 (1970), pp. 143-151 | Article | MR 274463 | Zbl 0222.57031

[30] F.A. Garside The braid group and other groups, Quart. J. Math. Oxford, Tome 20 (1969) no. 78, pp. 235-254 | Article | MR 248801 | Zbl 0194.03303

[31] V.V. Goryunov The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen., Tome 12 (1978) no. 2, p. 76-77 | MR 498905 | Zbl 0409.20032 | Zbl 0401.20034

[32] Y. Kobayashi Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, Tome 65 (1990), pp. 263-275 | Article | MR 1072284 | Zbl 0711.20035

[33] Y. Lafont A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra, Tome 98 (1995), pp. 229-244 | Article | MR 1324032 | Zbl 0832.20080

[34] Y. Lafont; A. Prouté Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci, Tome 1 (1991), pp. 297-326 | Article | MR 1146597 | Zbl 0748.68035

[35] J.-L. Loday Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math., Tome 265 (2000), pp. 99-127 | MR 1803954 | Zbl 0978.20022

[36] M. Picantin Petits groupes gaussiens (2000) (Thèse de doctorat, Université de Caen)

[37] M. Picantin The center of thin Gaussian groups, J. Algebra, Tome 245 (2001) no. 1, pp. 92-122 | Article | MR 1868185 | Zbl 1002.20022

[38] M. Salvetti Topology of the complement of real hyperplanes in 𝐂 N , Invent. Math., Tome 88 (1987) no. 3, pp. 603-618 | Article | MR 884802 | Zbl 0594.57009

[39] M. Salvetti The homotopy type of Artin groups, Math. Res. Letters, Tome 1 (1994), pp. 565-577 | MR 1295551 | Zbl 0847.55011

[40] H. Sibert Extraction of roots in Garside groups, Comm. in Algebra, Tome 30 (2002) no. 6, pp. 2915-2927 | Article | MR 1908246 | Zbl 1007.20036

[41] C. Squier Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra, Tome 49 (1987), pp. 201-217 | Article | MR 920522 | Zbl 0648.20045

[42] C. Squier The homological algebra of Artin groups, Math. Scand., Tome 75 (1995), pp. 5-43 | MR 1308935 | Zbl 0839.20065

[43] C. Squier A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci., Tome 131 (1994), pp. 271-294 | MR 1288942 | Zbl 0863.68082

[44] J. Stallings The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math., Tome 319 (1973), pp. 169-182 | MR 382481 | Zbl 0263.18016

[45] W. Thurston Finite state algorithms for the braid group, Circulated notes (1988)

[46] F.V. Vainstein Cohomologies of braid groups, Functional Anal. Appl., Tome 12 (1978), pp. 135-137 | Article | Zbl 0424.55015

[47] V.V. Vershinin Braid groups and loop spaces, Uspekhi Mat. Nauk, Tome 54 (1999) no. 2, pp. 3-84 | MR 1711263 | Zbl 1124.20304 | Zbl 01384830