Soit où et sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de et la topologie des entrelacs à l’infini des courbes affines et . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.
Let where and are polynomial maps. A relationship is established between the following two objects: on the one hand, the Newton polygon of the union of the discriminant curve of and its non-properness locus, and on the other, the topological type of the link at infinity of the affine curves and . Some consequences related to the Jacobian Conjecture are obtained.
@article{AIF_2003__53_2_399_0, author = {Artal Bartolo, Enrique and Cassou-Nogu\`es, Philippe and Maugendre, H\'el\`ene}, title = {Quotients jacobiens d'applications polynomiales}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {399-428}, doi = {10.5802/aif.1948}, mrnumber = {1990002}, zbl = {1100.14529}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_2_399_0} }
Artal Bartolo, Enrique; Cassou-Noguès, Philippe; Maugendre, Hélène. Quotients jacobiens d'applications polynomiales. Annales de l'Institut Fourier, Tome 53 (2003) pp. 399-428. doi : 10.5802/aif.1948. http://gdmltest.u-ga.fr/item/AIF_2003__53_2_399_0/
[1] Sur l'intersection des courbes méromorphes, C. R. Acad. Sci. Paris, Sér. I Math., Tome 329 (1999) no. 7, pp. 625-628 | Article | MR 1717121 | Zbl 0962.14023
[2] Diagrams of algebraic curves (2000) (preprint)
[3] Topology of complex polynomials via polar curves, Kodai Math. J., Tome 22 (1999) no. 1, pp. 131-139 | Article | MR 1679243 | Zbl 0939.32027
[4] Non-zero constant Jacobian polynomial maps of , Ann. Polon. Math., Tome 71 (1999) no. 3, pp. 287-310 | MR 1704304 | Zbl 0942.14032
[5] Three-dimensional link theory and invariance of plane curve singularities, Princeton University Press, Princeton NJ, Annals of Mathematics Studies, Tome no 110 (1985) | Zbl 0628.57002
[6] Formulae for the singularities at infinity of plane algebraic curves, Effective methods in algebraic and analytic geometry, 2000 (Kraków), MR1 886 934 (Univ. Iagel. Acta Math.) Tome 39 (2001), pp. 109-133 | Zbl 1015.32026
[7] Lectures on three-manifold topology, American Mathematical Society, Providence, R.I. (1980) | MR 565450 | Zbl 0433.57001
[8] Testing sets for properness of polynomial mappings, Math. Ann., Tome 315 (1999) no. 1, pp. 1-35 | Article | MR 1717542 | Zbl 0946.14039
[9] Geometry of critical loci, J. London Math. Soc. (2), Tome 63 (2001) no. 3, pp. 533-552 | Article | MR 1825974 | Zbl 1018.32027
[10] A geometrical approach to the Jacobian conjecture for , Kodai Math. J., Tome 17 (1994), pp. 374-381 | Article | MR 1296904 | Zbl 1128.14301 | Zbl 00729227
[11] Global surgery formula for the Casson-Walker invariant, Princeton University Press, Princeton, NJ (1996) | MR 1372947 | Zbl 0949.57008
[12] Discriminant of a germ and Seifert fibred manifolds, J. London Math. Soc. (2), Tome 59 (1999) no. 1, pp. 207-226 | MR 1688499 | Zbl 0941.58027
[13] On the Jacobian conjecture and the configurations of roots, J. reine angew. Math., Tome 340 (1983), pp. 140-212 | MR 691964 | Zbl 0525.13011
[14] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., Tome 268 (1981) no. 2, pp. 299-344 | Article | MR 632532 | Zbl 0546.57002
[15] Rational polynomials of simple type, Pacific J. Math., Tome 204 (2002) no. 1, pp. 177-207 | Article | MR 1905197 | Zbl 1055.14062
[16] Good and bad field generators, J. Math. Kyoto Univ., Tome 17 (1977) no. 2, pp. 319-331 | MR 444627 | Zbl 0367.12013
[17] Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972, Soc. Math. France, Paris (Astérisque) Tome no 7-8 (1973), pp. 285-362 | Zbl 0295.14003
[18] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, Invent. Math., Tome 3 (1967), pp. 308-333 | Article | Zbl 0168.44503
[19] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent. Math., Tome 4 (1967), pp. 87-117 | Article | MR 235576 | Zbl 0168.44503