Quotients jacobiens d'applications polynomiales
Artal Bartolo, Enrique ; Cassou-Noguès, Philippe ; Maugendre, Hélène
Annales de l'Institut Fourier, Tome 53 (2003), p. 399-428 / Harvested from Numdam

Soit φ:=(f,g): 2 2 f et g sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de φ et la topologie des entrelacs à l’infini des courbes affines f -1 (0) et g -1 (0). Nous en déduisons alors des conséquences liées à la conjecture du jacobien.

Let φ:=(f,g): 2 2 where f and g are polynomial maps. A relationship is established between the following two objects: on the one hand, the Newton polygon of the union of the discriminant curve of φ and its non-properness locus, and on the other, the topological type of the link at infinity of the affine curves f -1 (0) and g -1 (0). Some consequences related to the Jacobian Conjecture are obtained.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/aif.1948
Classification:  14F45,  57M25
Mots clés: applications polynomiales, quotients jacobiens, polygone de Newton, variétés graphées
@article{AIF_2003__53_2_399_0,
     author = {Artal Bartolo, Enrique and Cassou-Nogu\`es, Philippe and Maugendre, H\'el\`ene},
     title = {Quotients jacobiens d'applications polynomiales},
     journal = {Annales de l'Institut Fourier},
     volume = {53},
     year = {2003},
     pages = {399-428},
     doi = {10.5802/aif.1948},
     mrnumber = {1990002},
     zbl = {1100.14529},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2003__53_2_399_0}
}
Artal Bartolo, Enrique; Cassou-Noguès, Philippe; Maugendre, Hélène. Quotients jacobiens d'applications polynomiales. Annales de l'Institut Fourier, Tome 53 (2003) pp. 399-428. doi : 10.5802/aif.1948. http://gdmltest.u-ga.fr/item/AIF_2003__53_2_399_0/

[1] A. Assi Sur l'intersection des courbes méromorphes, C. R. Acad. Sci. Paris, Sér. I Math., Tome 329 (1999) no. 7, pp. 625-628 | Article | MR 1717121 | Zbl 0962.14023

[2] P. Cassou-Noguès Diagrams of algebraic curves (2000) (preprint)

[3] E. Artal; P. Cassou-Noguès; A. Dimca Topology of complex polynomials via polar curves, Kodai Math. J., Tome 22 (1999) no. 1, pp. 131-139 | Article | MR 1679243 | Zbl 0939.32027

[4] Nguyen Van Chau Non-zero constant Jacobian polynomial maps of 2 , Ann. Polon. Math., Tome 71 (1999) no. 3, pp. 287-310 | MR 1704304 | Zbl 0942.14032

[5] D. Eisenbud; W.D. Neumann Three-dimensional link theory and invariance of plane curve singularities, Princeton University Press, Princeton NJ, Annals of Mathematics Studies, Tome no 110 (1985) | Zbl 0628.57002

[6] J. Gwoździewicz; A. Płoski Formulae for the singularities at infinity of plane algebraic curves, Effective methods in algebraic and analytic geometry, 2000 (Kraków), MR1 886 934 (Univ. Iagel. Acta Math.) Tome 39 (2001), pp. 109-133 | Zbl 1015.32026

[7] W. Jaco Lectures on three-manifold topology, American Mathematical Society, Providence, R.I. (1980) | MR 565450 | Zbl 0433.57001

[8] Z. Jelonek Testing sets for properness of polynomial mappings, Math. Ann., Tome 315 (1999) no. 1, pp. 1-35 | Article | MR 1717542 | Zbl 0946.14039

[9] D.T. Lê; H. Maugendre; C. Weber Geometry of critical loci, J. London Math. Soc. (2), Tome 63 (2001) no. 3, pp. 533-552 | Article | MR 1825974 | Zbl 1018.32027

[10] D.T. Lê; C. Weber A geometrical approach to the Jacobian conjecture for n=2, Kodai Math. J., Tome 17 (1994), pp. 374-381 | Article | MR 1296904 | Zbl 1128.14301 | Zbl 00729227

[11] C. Lescop Global surgery formula for the Casson-Walker invariant, Princeton University Press, Princeton, NJ (1996) | MR 1372947 | Zbl 0949.57008

[12] H. Maugendre Discriminant of a germ Φ : ( 2 , 0 ) ( 2 , 0 ) and Seifert fibred manifolds, J. London Math. Soc. (2), Tome 59 (1999) no. 1, pp. 207-226 | MR 1688499 | Zbl 0941.58027

[13] T.T. Moh On the Jacobian conjecture and the configurations of roots, J. reine angew. Math., Tome 340 (1983), pp. 140-212 | MR 691964 | Zbl 0525.13011

[14] W.D. Neumann A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., Tome 268 (1981) no. 2, pp. 299-344 | Article | MR 632532 | Zbl 0546.57002

[15] W.D. Neumann; P. Norbury Rational polynomials of simple type, Pacific J. Math., Tome 204 (2002) no. 1, pp. 177-207 | Article | MR 1905197 | Zbl 1055.14062

[16] P. Russell Good and bad field generators, J. Math. Kyoto Univ., Tome 17 (1977) no. 2, pp. 319-331 | MR 444627 | Zbl 0367.12013

[17] B. Teissier Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972, Soc. Math. France, Paris (Astérisque) Tome no 7-8 (1973), pp. 285-362 | Zbl 0295.14003

[18] F. Waldhausen Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, Invent. Math., Tome 3 (1967), pp. 308-333 | Article | Zbl 0168.44503

[19] F. Waldhausen Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent. Math., Tome 4 (1967), pp. 87-117 | Article | MR 235576 | Zbl 0168.44503