On démontre que la plupart des groupes de Lie semi-simples et compacts, admettent plusieurs métriques riemanniennes invariantes à gauche dont le flot géodésique possède une entropie topologique positive. De plus, on démontre que, sur la plupart des espaces homogènes, il existe dans chaque voisinage de la métrique bi-invariante, des métriques riemanniennes "collectives", dont le flot géodésique possède une entropie topologique positive. On discute des autres propriétés du flot géodésique collectif.
We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.
@article{AIF_2003__53_1_265_0, author = {Butler, L\'eo T. and Paternain, Gabriel P.}, title = {Collective geodesic flows}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {265-308}, doi = {10.5802/aif.1944}, mrnumber = {1973073}, zbl = {1066.53135}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_1_265_0} }
Butler, Léo T.; Paternain, Gabriel P. Collective geodesic flows. Annales de l'Institut Fourier, Tome 53 (2003) pp. 265-308. doi : 10.5802/aif.1944. http://gdmltest.u-ga.fr/item/AIF_2003__53_1_265_0/
[9] The moment map and collective motion, Ann. Physics, Tome 127 (1980), pp. 220-253 | Article | MR 576424 | Zbl 0453.58015
[1] Geodesic flow on and the intersection of quadrics, Proc. Nat. Acad. Sci. U.S.A, Tome 81 (1984), pp. 4613-4616 | Article | MR 758421 | Zbl 0545.58027
[2] The algebraic integrability of geodesic flow on , Invent. Math, Tome 67 (1982), pp. 297-331 | Article | MR 665159 | Zbl 0539.58012
[3] Dynamical Systems III, Springer Verlag, Berlin, Encyclopaedia of Mathematical Sciences (1988) | MR 1292465 | Zbl 0623.00023
[4] Integrable Euler equations on and their physical applications, Comm. Math. Phys, Tome 93 (1984), pp. 417-436 | Article | MR 745694 | Zbl 0567.58012
[5] Orbital isomorphism between two classical integrable systems. The Euler case and the Jacobi problem, Lie groups and Lie algebras, Kluwer Acad. Publ., Dordrecht (Math. Appl) Tome 433 (1998), pp. 359-382 | Zbl 0904.58024
[6] Entropy for Group Endomorphisms and Homogeneous spaces, Trans. of Am. Math. Soc, Tome 153 (1971), pp. 401-414 | Article | MR 274707 | Zbl 0212.29201
[7] A geometric criterion for positive topological entropy, Comm. Math. Phys, Tome 172 (1995), pp. 95-118 | Article | MR 1346373 | Zbl 0945.37003
[8] Symplectic techniques in physics, Cambridge University Press, Cambridge (1984) | MR 770935 | Zbl 0576.58012
[10] The algebraic complete integrability of geodesic flow on , Comm. Math. Phys, Tome 94 (1984), pp. 271-287 | Article | MR 761797 | Zbl 0584.58023
[11] Lectures on the Theory of Elliptic Functions, Dover, New York (1909 (reprint 1958))
[12] Introduction to the modern theory of dynamical systems, Cambridge University Press, Encyclopedia of Mathematics and its Applications, Tome 54 (1995) | MR 1326374 | Zbl 0878.58020
[13] Differential geometry, Lie groups, and symmetric spaces, American Mathematical Society, Providence, RI (2001. Corrected reprint of the 1978 original) | MR 1834454 | Zbl 0993.53002
[14] Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups, Indiana Univ. Math. J, Tome 32 (1983), pp. 273-309 | Article | MR 690190 | Zbl 0488.70006
[15] Riemannian Geometry, De Gruyter, Berlin-New York (1982) | MR 666697 | Zbl 0495.53036
[16] Nonintegrability of Kirchhoff's equations (Russian), Dokl. Akad. Nauk SSSR, Tome 266 (1982), pp. 1298-1300 | MR 681629 | Zbl 0541.70009
[17] A remark on the integration of the {E}ulerian equations of the dynamics of an n-dimensional rigid body, Funkcional. Anal. i Priložen., Tome 10 (1976), p. 93-94 | MR 455031 | Zbl 0343.70003
[18] On the topological entropy of geodesic flows, J. Diff. Geom, Tome 45 (1997), pp. 74-93 | MR 1443332 | Zbl 0896.58052
[19] Integrals of geodesic flows on Lie groups, Funkcional. Anal. i Priložen., Tome 4 (1970), pp. 73-77 | MR 274891
[20] The integration of Euler equations on a semisimple Lie algebra, Dokl. Akad. Nauk SSSR, Tome 231 (1976), pp. 536-538 | MR 501139 | Zbl 0392.58001
[21] A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen., Tome 12 (1978), pp. 46-56 | MR 516342 | Zbl 0396.58003
[22] Euler-Poinsot dynamical systems and geodesic flows of ellipsoids: topologically nonconjugation, Tensor and vector analysis, Gordon and Breach, Amsterdam (1998), pp. 76-84 | Zbl 0935.37020
[23] Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory Dynam. Systems (Charles Conley Memorial Issue) Tome 8* (1988), pp. 395-409 | Zbl 0666.58039
[24] Integrable geodesic flows on homogeneous spaces, Ergod. Th. and Dyn. Syst, Tome 1 (1981), pp. 495-517 | MR 662740 | Zbl 0491.58014
[25] Conditions for the integrability of Euler equations on , (Russian), Dokl. Akad. Nauk SSSR, Tome 270 (1983), pp. 1298-1300 | MR 712935 | Zbl 0539.58013
[26] An introduction to ergodic theory, Springer-Verlag, New York-Heidelberg-Berlin, Graduate Texts in Mathematics (1982) | MR 648108 | Zbl 0475.28009
[27] The local structure of Poisson manifolds, J. Differential Geom, Tome 18 (1983), pp. 523-557 | MR 723816 | Zbl 0524.58011
[28] Homoclinic points and intersections of Lagrangian submanifolds, Discrete Contin. Dynam. Systems, Tome 6 (2000), pp. 243-253 | Article | MR 1739927 | Zbl 1009.37040