On considère l’équation différentielle non linéaire singulièrement perturbée qu’on suppose réelle et analytique pour proche de et , asez petits. On suppose que 0 est un point tournant, c’est-à-dire si . On démontre que l’existence de solutions locales (en ) ou globales, analytiques réelles ou bornées quand est équivalente à l’existence d’une solution série formelle avec analytiques en . L’outil principal de la démonstration est un nouveau “principe de prolongement analytique” pour de telles solutions dites surstables. On applique ce résultat à l’équation d’ordre deux où et sont analytiques réelles pour proche de et assez petit. On suppose que si et que la fonction a un zéro en d’ordre au moins égal à celui de . On montre que l’existence de solutions locales ou globales, analytiques réelles ou , tendant vers une solution non triviale de l’équation réduite est équivalente à l’existence d’une solution série formelle non triviale avec analytiques en . Ceci améliore et généralise un résultat de C.H. Lin concernant le phénomène de “résonance au sens d’Ackerberg-O’Malley”. Dans le dernier paragraphe, on construit des exemples d’ordre deux qui présentent une résonance et tels que la solution formelle ait une dérivée logarithmique prescrite en , divergente d’ordre Gevrey 1.
We consider a singularity perturbed nonlinear differential equation which we suppose real analytic for near some interval and small , . We furthermore suppose that 0 is a turning point, namely that is positive if . We prove that the existence of nicely behaved (as ) local (at ) or global, real analytic or solutions is equivalent to the existence of a formal series solution with analytic at . The main tool of a proof is a new “principle of analytic continuation” for such “overstable” solutions. We apply this result to the second order linear differential equation with and real analytic for near some interval and small . We assume that is positive if and that the function has a zero at of at least the same order as . For this equation, we prove that the existence of local or global, real analytic or solutions tending to a nontrivial solution of the reduced equation is equivalent to the existence of a non trivial formal series solution with analytic at . This improves and generalizes a result of C.H. Lin on this so-called " Ackerberg-O’Malley resonance" phenomenon. In the proof, the problem is reduced to the preceding problem for the corresponding Riccati equation In the final section, we construct examples of such second order equations exhibiting resonance such that the formal solution has a prescribed logarithmic derivative at which is divergent of Gevrey order 1.
@article{AIF_2003__53_1_227_0, author = {Fruchard, Augustin and Sch\"afke, Reinhard}, title = {Overstability and resonance}, journal = {Annales de l'Institut Fourier}, volume = {53}, year = {2003}, pages = {227-264}, doi = {10.5802/aif.1943}, zbl = {1037.34047}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2003__53_1_227_0} }
Fruchard, Augustin; Schäfke, Reinhard. Overstability and resonance. Annales de l'Institut Fourier, Tome 53 (2003) pp. 227-264. doi : 10.5802/aif.1943. http://gdmltest.u-ga.fr/item/AIF_2003__53_1_227_0/
[1] Boundary layer Problems Exhibiting Resonance, Studies in Appl. Math., Tome 49 (1970) no. 3, pp. 277-295 | MR 269940 | Zbl 0198.12901
[2] Asymptotic expansions of canards with poles. Application to the stationary unidimensional Schrödinger equation, Bull. Belgian Math. Soc., suppl. `Nonstandard Analysis' (1996), pp. 71-90 | MR 1409643 | Zbl 0896.34069
[3] Enlacements de canards, Publications IHES, Tome 72 (1990), pp. 63-91 | Numdam | Zbl 0737.34018
[4] Chasse au canard, Collect. Math., Tome 31 (1981) no. 1-3, pp. 37-119 | Zbl 0529.34046
[5] Solutions surstables des équations différentielles complexes lentes-rapides à point tournant, Ann. Fac. Sci. Toulouse, Tome VII (1998) no. 4, pp. 1-32 | Numdam | MR 1693589 | Zbl 0981.34084
[6] Overstability : toward a global study, C.R. Acad. Sci. Paris, série I, Tome 326 (1998), pp. 873-878 | MR 1648552 | Zbl 0922.34048
[7] Bifurcation du portrait de phase pour des équations différentielles linéaires du second ordre ayant pour type l'équation d'Hermite (1981) (Thèse de Doctorat d'Etat, Strasbourg)
[8] Champs lents-rapides complexes à une dimension lente, Ann. Sci. École Norm. Sup., 4e série, Tome 26 (1993), pp. 149-173 | Numdam | MR 1209706 | Zbl 0769.34005
[9] Gevrey solutions of singularly perturbed differential equations, J. reine angew. Math., Tome 518 (2000), pp. 95-129 | Article | MR 1739408 | Zbl 0937.34075
[10] Resonance in a boundary value problem of singular perturbation type, Studies in Appl. Math., Tome 52 (1973), pp. 129-139 | MR 342799 | Zbl 0264.34070
[11] The nature of resonance in a singular perturbation problem of turning point type, SIAM J. Math. Anal., Tome 11 (1980), pp. 1-22 | Article | MR 556493 | Zbl 0424.34021
[12] Méthode du plan d'observabilité (1981) (Thèse de Doctorat d'Etat, prépublication IRMA, 7, rue René Descartes, 67084 Strasbourg Cedex (France))
[13] An introduction to complex analysis in several variables, Elsevier Science B.V., Amsterdam (1966, revised 1973, 1990)
[14] A geometric approach to boundary layer problems exhibiting resonance, SIAM. J. Appl. Math., Tome 37 (1979) no. 2, pp. 436-458 | Article | MR 543963 | Zbl 0417.34051
[15] Boundary value problems with a turning point, Studies in Appl. Math., Tome 51 (1972), pp. 261-275 | MR 355236 | Zbl 0257.34015
[16] The sufficiency of Matkowsky-condition in the problem of resonance, Trans. Amer. Math. Soc., Tome 278 (1983) no. 2, pp. 647-670 | Article | MR 701516 | Zbl 0513.34055
[17] On boundary layer problems exhibiting resonance, SIAM Review, Tome 17 (1975), pp. 82-100 | Article | MR 358004 | Zbl 0276.34055
[18] Sufficient conditions for Ackerberg-O'Malley resonance, SIAM J. Math. Anal., Tome 9 (1978), pp. 328-355 | Article | MR 470383 | Zbl 0375.34034
[19] A theorem concerning uniform simplification at a transition point and the problem of resonance, SIAM J. Math. Anal., Tome 12 (1981), pp. 653-668 | Article | MR 625824 | Zbl 0463.34030
[20] Asymptotic expansions for ordinary differential equations, Interscience, New York (1965) | MR 203188 | Zbl 0133.35301
[21] Linear Turning Point Theory, Springer, New York (1985) | MR 771669 | Zbl 0558.34049