Nous donnons l’asymptotique du courant d’un gaz d’électrons en limite semi-classique dans le régime champ magnétique constant et très fort. Nous supposons très peu de régularité pour le potentiel scalaire . En particulier, le résultat peut s’appliquer au champ moyen provenant de la théorie de Thomas-Fermi magnétique. La démonstration repose sur une estimation de la densité d’états au deuxième niveau de Landau.
We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential . In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory . The proof is based on an estimate on the density of states in the second Landau band.
@article{AIF_2002__52_6_1901_0, author = {Fournais, Soren}, title = {Semiclassics of the quantum current in very strong magnetic fields}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1901-1945}, doi = {10.5802/aif.1938}, mrnumber = {1954328}, zbl = {1013.81059}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_6_1901_0} }
Fournais, Soren. Semiclassics of the quantum current in very strong magnetic fields. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1901-1945. doi : 10.5802/aif.1938. http://gdmltest.u-ga.fr/item/AIF_2002__52_6_1901_0/
[AdMBG91] Notes on the N-body Problem, Part II (1991) (Univ. of Genève Preprint)
[AHS78] Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J, Tome 45 (1978) no. 4, pp. 847-883 | Article | MR 518109 | Zbl 0399.35029
[AHS81] Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys, Tome 79 (1981) no. 4, pp. 529-572 | MR 623966 | Zbl 0464.35086
[Fou01a] On the semiclassical asymptotics of the current and magnetisation of a non-interacting electron gas at zero temperature in a strong constant magnetic field, Ann. Henri Poincaré (2001) no. 2, pp. 1-23 | MR 1877238 | Zbl 0986.82006
[Fou01b] The magnetisation of large atoms in strong magnetic fields, Comm. Math. Phys, Tome 216 (2001) no. 2, pp. 375-393 | Article | MR 1814852 | Zbl 1004.81041
[Fou99] Semiclassics of the quantum current in a strong constant magnetic field (1999) (University of Aarhus Preprint, no. 9) | Zbl 1106.81302
[FW94] The spectrum of a hydrogen atom in an intense magnetic field, Rev. Math. Phys, Tome 6 (1994) no. 5, pp. 699-832 | Article | MR 1301055 | Zbl 0814.35107
[GG99] On the virial theorem in quantum mechanics, Comm. Math. Phys, Tome 208 (1999) no. 2, pp. 275-281 | Article | MR 1729087 | Zbl 0961.81009
[Ivr98] Microlocal analysis and precise spectral asymptotics, Springer-Verlag, Berlin (1998) | MR 1631419 | Zbl 0906.35003
[Lie81] Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys, Tome 53 (1981) no. 4, pp. 603-641 | Article | MR 629207 | Zbl 1049.81679
[LL97] Analysis, American Mathematical Society, Providence, RI (1997) | MR 1415616 | Zbl 0873.26002
[LSY94a] Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys, Tome 161 (1994) no. 1, pp. 77-124 | Article | MR 1266071 | Zbl 0807.47058
[LSY94b] Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions, Comm. Pure Appl. Math, Tome 47 (1994) no. 4, pp. 513-591 | Article | MR 1272387 | Zbl 0800.49041
[RS78] Methods of modern mathematical physics I-IV, Academic Press (1972-78) | MR 751959 | Zbl 0401.47001
[Sob94] The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J, Tome 74 (1994) no. 2, pp. 319-429 | MR 1272980 | Zbl 0824.35151
[Sob95] Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor., Tome 62 (1995) no. 4, pp. 325-360 | Numdam | MR 1343781 | Zbl 0843.35024