Semiclassics of the quantum current in very strong magnetic fields
[Limite semi-classique du courant quantique en présence d'un champ magnétique très fort]
Fournais, Soren
Annales de l'Institut Fourier, Tome 52 (2002), p. 1901-1945 / Harvested from Numdam

Nous donnons l’asymptotique du courant d’un gaz d’électrons en limite semi-classique dans le régime champ magnétique constant et très fort. Nous supposons très peu de régularité pour le potentiel scalaire V. En particulier, le résultat peut s’appliquer au champ moyen V MTF provenant de la théorie de Thomas-Fermi magnétique. La démonstration repose sur une estimation de la densité d’états au deuxième niveau de Landau.

We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential V. In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory V MTF . The proof is based on an estimate on the density of states in the second Landau band.

Publié le : 2002-01-01
DOI : https://doi.org/10.5802/aif.1938
Classification:  81V45,  81V70
Mots clés: limite semi-classique, théorie magnétique de Thomas-Ferni, courant quantique
@article{AIF_2002__52_6_1901_0,
     author = {Fournais, Soren},
     title = {Semiclassics of the quantum current in very strong magnetic fields},
     journal = {Annales de l'Institut Fourier},
     volume = {52},
     year = {2002},
     pages = {1901-1945},
     doi = {10.5802/aif.1938},
     mrnumber = {1954328},
     zbl = {1013.81059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2002__52_6_1901_0}
}
Fournais, Soren. Semiclassics of the quantum current in very strong magnetic fields. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1901-1945. doi : 10.5802/aif.1938. http://gdmltest.u-ga.fr/item/AIF_2002__52_6_1901_0/

[AdMBG91] W.O. Amrein; A.-M. Boutet; De Monvel; - Berthier; V. Georgescu Notes on the N-body Problem, Part II (1991) (Univ. of Genève Preprint)

[AHS78] J. Avron; I. Herbst; B. Simon Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J, Tome 45 (1978) no. 4, pp. 847-883 | Article | MR 518109 | Zbl 0399.35029

[AHS81] J. E. Avron; I. W. Herbst; B. Simon Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys, Tome 79 (1981) no. 4, pp. 529-572 | MR 623966 | Zbl 0464.35086

[Fou01a] S. Fournais On the semiclassical asymptotics of the current and magnetisation of a non-interacting electron gas at zero temperature in a strong constant magnetic field, Ann. Henri Poincaré (2001) no. 2, pp. 1-23 | MR 1877238 | Zbl 0986.82006

[Fou01b] S. Fournais The magnetisation of large atoms in strong magnetic fields, Comm. Math. Phys, Tome 216 (2001) no. 2, pp. 375-393 | Article | MR 1814852 | Zbl 1004.81041

[Fou99] S. Fournais Semiclassics of the quantum current in a strong constant magnetic field (1999) (University of Aarhus Preprint, no. 9) | Zbl 1106.81302

[FW94] R. Froese; R. Waxler The spectrum of a hydrogen atom in an intense magnetic field, Rev. Math. Phys, Tome 6 (1994) no. 5, pp. 699-832 | Article | MR 1301055 | Zbl 0814.35107

[GG99] V. Georgescu; C. Gérard On the virial theorem in quantum mechanics, Comm. Math. Phys, Tome 208 (1999) no. 2, pp. 275-281 | Article | MR 1729087 | Zbl 0961.81009

[Ivr98] V. Ivrii Microlocal analysis and precise spectral asymptotics, Springer-Verlag, Berlin (1998) | MR 1631419 | Zbl 0906.35003

[Lie81] E. H. Lieb Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys, Tome 53 (1981) no. 4, pp. 603-641 | Article | MR 629207 | Zbl 1049.81679

[LL97] Elliott H. Lieb; M. Loss Analysis, American Mathematical Society, Providence, RI (1997) | MR 1415616 | Zbl 0873.26002

[LSY94a] E. H. Lieb; J. P. Solovej; J. Yngvason Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys, Tome 161 (1994) no. 1, pp. 77-124 | Article | MR 1266071 | Zbl 0807.47058

[LSY94b] E. H. Lieb; J. P. Solovej; J. Yngvason Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions, Comm. Pure Appl. Math, Tome 47 (1994) no. 4, pp. 513-591 | Article | MR 1272387 | Zbl 0800.49041

[RS78] M. Reed; B. Simon Methods of modern mathematical physics I-IV, Academic Press (1972-78) | MR 751959 | Zbl 0401.47001

[Sob94] A. V. Sobolev The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J, Tome 74 (1994) no. 2, pp. 319-429 | MR 1272980 | Zbl 0824.35151

[Sob95] A. V. Sobolev Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor., Tome 62 (1995) no. 4, pp. 325-360 | Numdam | MR 1343781 | Zbl 0843.35024