Si est un domaine fortement pseudo-convexe de , défini par un polynôme réel de degré , nous montrons que le groupe de Lie s’identifie à une variété algébrique de Nash constructible du CR fibré de , et que la somme de ses nombres de Betti est bornée par une constante , dépendant seulement de et de . Lorsque est simplement connexe, nous donnons une borne explicite, mais plus grossière, en fonction de la dimension et du degré du polynôme. Notre approche consiste à adapter la théorie de Cartan-Chern-Moser aux hypersurfaces algébriques.
For a strongly pseudoconvex domain defined by a real polynomial of degree , we prove that the Lie group can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle of , and that the sum of its Betti numbers is bounded by a certain constant depending only on and . In case is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser theory to the algebraic hypersurfaces.
@article{AIF_2002__52_6_1793_0, author = {Huang, Xiaojun and Ji, Shanyu}, title = {Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1793-1831}, doi = {10.5802/aif.1935}, mrnumber = {1954325}, zbl = {1023.32024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_6_1793_0} }
Huang, Xiaojun; Ji, Shanyu. Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1793-1831. doi : 10.5802/aif.1935. http://gdmltest.u-ga.fr/item/AIF_2002__52_6_1793_0/
[Be] Compactness of families of holomorphic mappings up to the boundary, Springer-Verlag (Lecture Notes in Math) Tome 1268, pp. 29-43 | Zbl 0633.32020
[BER1] Parametrization of local biholomorphisms of real analytic hypersurfaces, Asian J. Math, Tome Vol 1 (1997), pp. 1-16 | MR 1480988 | Zbl 0943.32021
[BER2] Real Submanifolds in Complex Spaces and Their Mappings, Princeton University, New Jersey, Princeton Univ. Mathematics Series, Tome 47 (1999) | MR 1668103 | Zbl 0944.32040
[BER3] Local geometric properties of real submanifolds in complex spaces, Bull. AMS, Tome 37 (2000), pp. 309-336 | Article | MR 1754643 | Zbl 0955.32027
[Bo] Analytic and meromorphic continuation by means of Green's formula, Ann. of Math, Tome 44 (1943), pp. 652-673 | Article | MR 9206 | Zbl 0060.24206
[BS] Projective connections in CR geometry, Manuscripta Math, Tome 33 (1980), pp. 1-26 | Article | MR 596374 | Zbl 0478.32018
[BT] Differential Forms in Algebraic Topology, Springer-Verlag, Graduate Texts in Mathematics (1982) | MR 658304 | Zbl 0496.55001
[Ch] On the projective structure of a real hypersurface in , Math. Scand, Tome 36 (1975), pp. 74-82 | MR 379910 | Zbl 0305.53019
[CJ1] Projective geometry and Riemann's mapping problem, Math Ann, Tome 302 (1995), pp. 581-600 | Article | MR 1339928 | Zbl 0843.32013
[CJ2] On the Riemann mapping theorem, Ann. of Math, Tome 144 (1996), pp. 421-439 | Article | MR 1418903 | Zbl 0872.32016
[CM] Real hypersurfaces in complex manifolds, Acta Math, Tome 133 (1974), pp. 219-271 | Article | MR 425155 | Zbl 0302.32015
[ES] Foundations of algebraic topology, Princeton Univ. Press, Princeton, N.J. (1952) | MR 50886 | Zbl 0047.41402
[Fa] Segre families and real hypersurfaces, Invent. Math, Tome 60 (1980), pp. 135-172 | Article | MR 586425 | Zbl 0464.32011
[Ga] The method of equivalence and its applications, CBMS-NSF (regional conference series in applied mathematics) (1989) | Zbl 0694.53027
[H1] On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions, Ann. Inst. Fourier, Grenoble, Tome 44 (1994) no. 2, pp. 433-463 | Article | Numdam | MR 1296739 | Zbl 0803.32011
[H2] Geometric Analysis in Several Complex Variables (August, 1994) (Ph. D. Thesis, Washington University)
[H3] On some problems in several complex variables and Cauchy-Riemann Geometry, Proceedings of ICCM (AMS/IP Stud. Adv. Math) Tome 20 (2001), pp. 383-396 | Zbl 1048.32022
[HJ] Global holomorphic extension of a local map and a Riemann mapping Theorem for algebraic domains, Math. Res. Lett, Tome 5 (1998), pp. 247-260 | MR 1617897 | Zbl 0912.32010
[HJY] An example of real analytic strongly pseudoconvex hypersurface which is not holomorphically equivalent to any algebraic hypersurfaces, Ark. Mat., Tome 39 (2001), pp. 75-93 | Article | MR 1821083 | Zbl 1038.32034
[M] On the Betti numbers of real varieties. Proc. Amer. Math. Soc, Tome 15 (1964), pp. 275-280 | MR 161339 | Zbl 0123.38302
[Pi] On holomorphic maps or real-analytic hypersurfaces, Mat. Sb., Nov. Ser., Tome 105 (1978), pp. 574-593 | MR 496595
[V] Holomorphic mappings and geometry of hypersurfaces, Several Complex Variables I, Springer-Verlag, Berlin (Encyclopaedia of Mathematical Sciences) Tome Vol. 7 (1985), pp. 159-214 | Zbl 0781.32013
[We] On the mapping problem for algebraic real hypersurfaces, Invent. Math, Tome 43 (1977), pp. 53-68 | Article | MR 463482 | Zbl 0348.32005