Soit un ensemble relativement fermé d’une variété de Stein. On prouve que les groupes de cohomologie associés à l’opérateur des formes de Whitney sur et des courants à support dans sont soit zéro, soit de dimension infinie. Cela nous permet d’obtenir une condition nécessaire pour l’existence d’un plongement générique d’une variété CR dans un ouvert d’une variété de Stein : il faut que tous les groupes de cohomologie associés à l’opérateur soient ou bien zéro ou bien de dimension infinie.
Let be a relatively closed subset of a Stein manifold. We prove that the -cohomology groups of Whitney forms on and of currents supported on are either zero or infinite dimensional. This yields obstructions of the existence of a generic embedding of a CR manifold into any open subset of any Stein manifold, namely by the nonvanishing but finite dimensionality of some intermediate -cohomology groups.
@article{AIF_2002__52_6_1785_0, author = {Brinkschulte, Judith and Denson Hill, C. and Nacinovich, Mauro}, title = {Obstructions to generic embeddings}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1785-1792}, doi = {10.5802/aif.1934}, mrnumber = {1952531}, zbl = {1029.32018}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_6_1785_0} }
Brinkschulte, Judith; Denson Hill, C.; Nacinovich, Mauro. Obstructions to generic embeddings. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1785-1792. doi : 10.5802/aif.1934. http://gdmltest.u-ga.fr/item/AIF_2002__52_6_1785_0/
[AFN] On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa, Tome 8 (1981), pp. 365-404 | Numdam | MR 634855 | Zbl 0482.35061
[AH] Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Sc. Norm. Sup. Pisa, Tome 26 (1972), pp. 299-324 | Numdam | MR 460724 | Zbl 0256.32006
[AHLM] Complexes of differential operators. The Mayer-Vietoris sequence, Invent. Math, Tome 35 (1976), pp. 43-86 | MR 423425 | Zbl 0332.58016
[B] Sheaf theory, Springer-Verlag, GTM, Tome 170 (1997) | MR 1481706 | Zbl 0874.55001
[Br] Laufer's vanishing theorem for embedded manifolds, Math. Z, Tome 239 (2002), pp. 863-866 | Article | MR 1902064 | Zbl 1008.32021
[G] On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math, Tome 68 (1958), pp. 460-472 | Article | MR 98847 | Zbl 0108.07804
[HL] On the boundaries of complex analytic varieties I, Ann. of Math, Tome 102 (1975), pp. 223-290 | Article | MR 425173 | Zbl 0317.32017
[HN1] A necessary condition for global Stein immersion of compact manifolds, Riv. Mat. Univ. Parma, Tome 5 (1992), pp. 175-182 | MR 1230608 | Zbl 0787.32020
[HN2] Duality and distribution cohomology of manifolds, Ann. Sc. Norm. Sup. Pisa, Tome 22 (1995), pp. 315-339 | Numdam | MR 1354910 | Zbl 0848.32003
[L] On the infinite dimensionality of the Dolbeault cohomology groups, Proc. Amer. Math. Soc, Tome 52 (1975), pp. 293-296 | Article | MR 379887 | Zbl 0314.32008
[N1] On boundary Hilbert differential complexes, Ann. Polon. Math, Tome 46 (1985), pp. 213-235 | MR 841829 | Zbl 0606.58046
[N2] Poincaré lemma for tangential Cauchy-Riemann complexes, Math. Ann, Tome 268 (1984), pp. 449-471 | Article | MR 753407 | Zbl 0574.32045
[NV] Tangential Cauchy-Riemann complexes on distributions, Ann. Mat. Pura Appl, Tome 146 (1987), pp. 123-160 | Article | MR 916690 | Zbl 0631.58024
[Y] Kohn-Rossi cohomology and its application to the complex Plateau problem I, Ann. of Math, Tome 113 (1981), pp. 67-110 | Article | MR 604043 | Zbl 0464.32012