Nous construisons des quantifications de l’algèbre de Poisson des fonctions sur le cône canonique d’une courbe algébrique , qui s’appuie sur la théorie des opérateurs pseudodifférentiels formels. Quand est une courbe complexe munie d’une uniformisation de Poincaré, nous proposons une construction équivalente, basée sur le travail de Cohen- Manin-Zagier sur les crochets de Rankin-Cohen. Quand est une courbe rationnelle, nous donnons une présentation de l’algèbre quantique, et nous discutons le problème de la construction algébrique de “relèvements différentiels”.
We introduce a quantization of the graded algebra of functions on the canonical cone of an algebraic curve , based on the theory of formal pseudodifferential operators. When is a complex curve with Poincaré uniformization, we propose another, equivalent construction, based on the work of Cohen-Manin-Zagier on Rankin-Cohen brackets. We give a presentation of the quantum algebra when is a rational curve, and discuss the problem of constructing algebraically “differential liftings”.
@article{AIF_2002__52_6_1629_0, author = {Enriquez, Benjamin and Odesskii, Alexander}, title = {Quantization of canonical cones of algebraic curves}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1629-1663}, doi = {10.5802/aif.1929}, mrnumber = {1952526}, zbl = {1052.14035}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_6_1629_0} }
Enriquez, Benjamin; Odesskii, Alexander. Quantization of canonical cones of algebraic curves. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1629-1663. doi : 10.5802/aif.1929. http://gdmltest.u-ga.fr/item/AIF_2002__52_6_1629_0/
[1] On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV equation, Invent. Math, Tome 50 (1979), pp. 219-248 | Article | MR 520927 | Zbl 0393.35058
[2] Systèmes hamiltoniens complètement intégrables associés aux surfaces K3, Problems in the theory of surfaces and their classification (Cortona, 1988), Academic Press (Sympos. Math.) Tome XXXII (1991), pp. 25-31 | MR 1273370 | Zbl 0827.58022
[3] Automorphic pseudodifferential operators, paper in memory of Irene Dorfman, Algebraic aspects of integrable systems, Birkhäuser Boston, Boston, MA (Progr. Nonlinear Diff. Eqs. Appl) Tome 26 (1997), pp. 17-47 | MR 1418868 | Zbl 1055.11514
[4] Complex star algebras, Kluwer Acad. Publishers, the Netherlands (Math. Physics, Analysis and Geometry) (1999), pp. 1-27 | MR 1733883 | Zbl 0980.53106
[5] Sklyanin's elliptic algebras, Functional Anal. Appl, Tome 23 (1990) no. 3, pp. 207-214 | Article | MR 1026987 | Zbl 0713.17009
[6] Principles of algebraic geometry, J. Wiley and Sons, Inc., New York, Wiley Classics Library (1994) | MR 1288523 | Zbl 0836.14001
[7] Algebraic geometry. A first course, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 133 (1985) | MR 1182558 | Zbl 0779.14001
[8] Deformation quantization of Poisson manifolds, I (e-print, math.QA/9709040) | Zbl 1058.53065
[9] Algebraic aspects of differential equations, J. Sov. Math, Tome 11 (1979), pp. 1-128 | Article | Zbl 0419.35001
[10] Polynomial Poisson algebras with regular structure of symplectic leaves (2001) (Preprint) | MR 1992166 | Zbl 1138.53314
[11] Exotic deformation quantization, J. Differential Geom, Tome 45 (1997) no. 2, pp. 390-406 | MR 1449978 | Zbl 0879.58028