En utilisant la structure infinitésimale des représentations unitaires irréductibles de , nous donnons une description complète de certaines - algèbres associées aux réseaux de , répondant ainsi à certaines questions de Bekka–de La Harpe–Valette.
By using the infinitesimal structure of the unitary irreducible representations of , we give a complete description of certain -algebras associated to lattices in ; this gives answers to some questions of Bekka–de La Harpe–Valette.
@article{AIF_2002__52_5_1287_0, author = {Pierrot, Fran\c cois}, title = {Structure de certaines $C^*$-alg\`ebres associ\'ees aux r\'eseaux de ${\rm PSL}\_2({\mathbb {R}})$}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1287-1299}, doi = {10.5802/aif.1919}, mrnumber = {1935551}, zbl = {1053.22004}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_5_1287_0} }
Pierrot, François. Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1287-1299. doi : 10.5802/aif.1919. http://gdmltest.u-ga.fr/item/AIF_2002__52_5_1287_0/
[A] Expansionals in Banach Algebra, Ann. Sci. de l'École Normale Supérieure, 4e série, Tome 6 (1973), pp. 67-84 | Numdam | MR 435842 | Zbl 0257.46054
[B] Restrictions of unitary representations to lattices and associated -algebras, JFA, Tome 143 (1997) | MR 1428115 | Zbl 0883.22006
[Ba] Multiplicateurs non bornés (1980) (Thèse de 3ème cycle, Paris VI)
[BCH] Some groups whose reduced -algebra is simple, Publ. Math. IHES, Tome 80 (1994), pp. 117-134 | Numdam | MR 1320606 | Zbl 0827.22001
[BH] Représentations d'un groupe faiblement équivalentes à la représentation régulière, Bull. Soc. Math. France, Tome 122 (1994), pp. 333-342 | Numdam | MR 1294459 | Zbl 0824.22011
[BV] Lattices in semi-simple Lie groups and multipliers of group -algebras, SMF (Astérisque) Tome 232 (1995), pp. 67-79 | Zbl 0851.22006
[CS] The irreducibility of restrictions of unitary representations to lattices, J. Reine. Angew. Math, Tome 420 (1991), pp. 85-98 | MR 1124567 | Zbl 0760.22014
[D] Les -algèbres et leurs représentations, Gauthiers-Villars (1964) | MR 171173 | Zbl 0152.32902
[K] Lorentz groups: -theory of unitary representations and crossed products, Soviet. Math. Dokl, Tome 29 (1984) | MR 741223 | Zbl 0584.22004
[L] , Addison-Wesley (1975) | MR 430163
[Lan] Hilbert -modules, a toolkit for operator algebraists, London Math. Soc. Lect. Notes Series, Tome 210 | MR 1325694 | Zbl 0822.46080
[M] Topological representations of the group -algebra of , Glas. Mat, Tome 6 (26) (1971), pp. 231-246 | MR 308795 | Zbl 0229.22010
[Ma] Discrete subgroups of semisimple Lie groups, Springer Verlag (1989) | MR 1090825 | Zbl 0732.22008
[P]
(2000) (Thèse de doctorat, Paris VII)[Ri] Induced representations of -algebras, Adv. in Math, Tome 13 (1974), pp. 176-257 | Article | MR 353003 | Zbl 0284.46040
[V] Notes on the structure and the K-theory of the -algebra associated to , Bull. Soc. Math. Belg. Sér. B, Tome XXXVI (1984), pp. 29-56 | MR 885552 | Zbl 0545.22003
[Vo] A non-commutative Weyl-Von Neumann theorem, Rev. R. Maths. Pures Appl, Tome 21 (1976), pp. 97-113 | MR 415338 | Zbl 0335.46039
[W] On the Selberg trace formula in the case of compact quotient, Bull. AMS, Tome vol 62 (1976) no. 2, pp. 171-195 | Article | MR 404533 | Zbl 0351.22008
[W2] Real reductive groups I, Academic Press (1988) | MR 929683 | Zbl 0666.22002
[Wo] Unbounded elements affiliated with -algebras and noncompact quantum groups, Comm. Math. Phys, Tome 136 (1991), pp. 399-432 | Article | MR 1096123 | Zbl 0743.46080