Soient un corps de nombres, son anneau d’entiers et un polynôme irréductible. Le théorème d’irréductibilité de Hilbert fournit une infinité de spécialisations entières telles que reste irréductible. Dans cet article, nous étudions l’ensemble des tels que est réductible. Nous montrons que est un ensemble fini sous des hypothèses assez faibles. En particulier, certains de nos énoncés généralisent des résultats antérieurs obtenus par des techniques d’approximations diophantiennes. Notre méthode est différente. Nous utilisons de la théorie élémentaire des groupes, la théorie des valuations et le théorème de Siegel sur les points entiers des courbes algébriques. En utilisant en fait la généralisation de Siegel-Lang du théorème de Siegel, la plupart de nos résultats sont valables sur des corps assez généraux. On peut obtenir d’autres résultats en faisant appel à la classification des groupes finis simples. Nous en donnons un aperçu dans la dernière section.
Let be a number field, its ring of integers, and be an irreducible polynomial. Hilbert’s irreducibility theorem gives infinitely many integral specializations such that is still irreducible. In this paper we study the set of those with reducible. We show that is a finite set under rather weak assumptions. In particular, previous results obtained by diophantine approximation techniques, appear as special cases of some of our results. Our method is different. We use elementary group theory, valuation theory, and Siegel’s theorem about integral points on algebraic curves. Indeed, using the Siegel-Lang extension of Siegel’s theorem, most of our results hold over more general fields. Using the classification of the finite simple groups, further results can be obtained. The last section contains a short survey.
@article{AIF_2002__52_4_983_0, author = {M\"uller, Peter}, title = {Finiteness results for Hilbert's irreducibility theorem}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {983-1015}, doi = {10.5802/aif.1907}, mrnumber = {1926669}, zbl = {1014.12002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_4_983_0} }
Müller, Peter. Finiteness results for Hilbert's irreducibility theorem. Annales de l'Institut Fourier, Tome 52 (2002) pp. 983-1015. doi : 10.5802/aif.1907. http://gdmltest.u-ga.fr/item/AIF_2002__52_4_983_0/
[Cav00] On a special case of Hilbert's irreducibility theorem, J. Number Theory, Tome 82 (2000), pp. 96-99 | Article | MR 1755156 | Zbl 0985.12001
[Dèb86] G-fonctions et théorème d`irréductibilité de Hilbert, Acta Arith, Tome 47 (1986), pp. 371-402 | MR 884733 | Zbl 0565.12012
[Dèb92] On the irreducibility of the polynomials , J. Number Theory, Tome 42 (1992), pp. 141-157 | Article | MR 1183373 | Zbl 0770.12005
[Dèb96] Hilbert subsets and S-integral points, Manuscripta Math., Tome 89 (1996) no. 1, pp. 107-137 | Article | MR 1368540 | Zbl 0853.12001
[DF99] Integral specialization of families of rational functions, Pacific J. Math, Tome 190 (1999) no. 1, pp. 45-85 | Article | MR 1722766 | Zbl 1016.12002
[DM96] Permutation Groups, Springer-Verlag, New York (1996) | MR 1409812 | Zbl 0951.20001
[FM69] On the invariance of chains of fields, Illinois J. Math., Tome 13 (1969), pp. 165-171 | MR 238815 | Zbl 0174.07302
[Fri74] On Hilbert's irreducibility theorem, J. Number Theory, Tome 6 (1974), pp. 211-231 | Article | MR 349624 | Zbl 0299.12002
[Fri77] Fields of definition of function fields and Hurwitz families -- Groups as Galois groups, Comm. Algebra, Tome 5 (1977), pp. 17-82 | Article | MR 453746 | Zbl 0478.12006
[Fri80] Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, The Santa Cruz Conference on Finite Groups, Amer. Math. Soc., Providence, Rhode Island (Proc. Sympos. Pure Math.) Tome vol. 37 (1980), pp. 571-602 | Zbl 0451.14011
[Fri85] On the Sprind\v zuk-Weissauer approach to universal Hilbert subsets, Israel J. Math., Tome 51 (1985) no. 4, pp. 347-363 | Article | MR 804491 | Zbl 0579.12002
[Gor68] Finite Groups, Harper and Row, New York-Evanston-London (1968) | MR 231903 | Zbl 0185.05701
[Gro71] Revêtement étales et groupe fondamental, SGA1, Springer-Verlag (Lecture Notes in Math.) Tome vol. 224 (1971)
[GT90] Finite groups of genus zero, J. Algebra, Tome 131 (1990), pp. 303-341 | Article | MR 1055011 | Zbl 0713.20011
[Gur00] Monodromy groups of curves (Preprint)
[HB82] Finite Groups III, Springer-Verlag, Berlin Heidelberg (1982) | MR 662826 | Zbl 0514.20002
[Isa76] Character Theory of Finite Groups, Academic Press, Pure and Applied Mathematics, Tome 69 (1976) | MR 460423 | Zbl 0337.20005
[Kli98] Arithmetical Similarities -- Prime Decomposition and Finite Group Theory, Oxford University Press, Oxford, Oxford Mathematical Monographs (1998) | MR 1638821 | Zbl 0896.11042
[Lan00] Werteverhalten holomorpher Funktionen auf Überlagerungen und zahlentheoretische Analogien II, Math. Nachr., Tome 211 (2000), pp. 79-108 | Article | MR 1743486 | Zbl 0995.11044
[Lan83] Fundamentals of Diophantine Geometry, Springer-Verlag, New York (1983) | MR 715605 | Zbl 0528.14013
[Lan90] Ganzalgebraische Punkte und der Hilbertsche Irreduzibilitätssatz, J. Reine Angew. Math, Tome 405 (1990), pp. 131-146 | Article | MR 1040999 | Zbl 0687.14001
[Lan94] Werteverhalten holomorpher Funktionen auf Überlagerungen und zahlentheoretische Analogien, Math. Ann, Tome 299 (1994), pp. 127-153 | Article | MR 1273080 | Zbl 0805.11077
[MM99] Inverse Galois Theory, Springer-Verlag, Berlin (1999) | MR 1711577 | Zbl 0940.12001
[Mül01] Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Siegel functions (submitted)
[Mül99] Hilbert's irreducibility theorem for prime degree and general polynomials, Israel J. Math, Tome 109 (1999), pp. 319-337 | Article | MR 1679603 | Zbl 0926.12001
[Sco77] Matrices and cohomology, Anal. Math, Tome 105 (1977), pp. 473-492 | Article | MR 447434 | Zbl 0399.20047
[Ser79] Local Fields, Springer-Verlag, New York (1979) | MR 554237 | Zbl 0423.12016
[Sie29] Über einige Anwendungen diophantischer Approximationen (Ges. Abh., I), Abh. Pr. Akad. Wiss., Tome 1 (1929), p. 41-69 ; 209-266
[Spr83] Arithmetic specializations in polynomials, J. Reine Angew. Math, Tome 340 (1983), pp. 26-52 | MR 691959 | Zbl 0497.12001
[Völ96] Groups as Galois Groups -- an Introduction, Cambridge University Press, New York (1996) | MR 1405612 | Zbl 0868.12003