Soit un ensemble auto-similaire avec coefficients de similarité et de dimension de Hausdorff , et soit un vecteur de probabilité. Le sous-ensemble de type de Besicovitch de est défini par où est la fonction indicatrice de l’ensemble . Soient et une fonction de jauge, on va démontrer dans cet article :(i) Si , alors de plus, et sont positifs et finis;(ii) Si est un vecteur de probabilité différent de , alors on peut classer les fonctions de jauge comme suit :
Let be a self-similar set with similarities ratio and Hausdorff dimension , let be a probability vector. The Besicovitch-type subset of is defined as where is the indicator function of the set . Let and be a gauge function, then we prove in this paper:(i) If , then moreover both of and are finite positive;(ii) If is a positive probability vector other than , then the gauge functions can be partitioned as follows
@article{AIF_2002__52_4_1061_0, author = {Ma, Ji-Hua and Wen, Zhi-Ying and Wu, Jun}, title = {Besicovitch subsets of self-similar sets}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1061-1074}, doi = {10.5802/aif.1911}, mrnumber = {1926673}, zbl = {1024.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_4_1061_0} }
Ma, Ji-Hua; Wen, Zhi-Ying; Wu, Jun. Besicovitch subsets of self-similar sets. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1061-1074. doi : 10.5802/aif.1911. http://gdmltest.u-ga.fr/item/AIF_2002__52_4_1061_0/
[1] On the sum of digits of real numbers represented in the dyadic system, Math. Ann, Tome 110 (1934), pp. 321-330 | Article | JFM 60.0949.01 | MR 1512941 | Zbl 0009.39503
[2] The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser, Tome 20 (1949), pp. 31-36 | Article | MR 31026 | Zbl 0031.20801
[3] Techniques in Fractal Geometry, John Wiley and sons inc. (1997) | MR 1449135 | Zbl 0869.28003
[4] A further example on scales of Hausdorff functions, J. London Math. Soc, Tome 8 (1974) no. 2, p. 585-586 | Article | MR 357721 | Zbl 0302.28015
[5] Singularity of self-similar measures with respect to Hausdorff measures, Trans. of Amer. Math. Soc., Tome 350 (1998) no. 6, pp. 2297-2310 | Article | MR 1475691 | Zbl 0899.28002
[6] The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Camb. Phil. Soc, Tome 116 (1994), pp. 513-526 | Article | MR 1291757 | Zbl 0811.28005
[7] Probability, Springer-Verlag, New York (1984) | MR 737192 | Zbl 0536.60001
[8] The measure theory of random fractals, Math. Proc. Cambridge Philo. Soc, Tome 100 (1986), pp. 383-408 | Article | MR 857718 | Zbl 0622.60021