Nous établissons un lien entre la fonction de complexité et le nombre de diagonales généralisées pour un billard polygonal. Dans le cas où le billard est rationnel, la fonction de complexité est comprise entre deux polynômes cubiques; elle a une asymptotique cubique lorsque le polygone pave le plan.
We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.
@article{AIF_2002__52_3_835_0, author = {Cassaigne, J. and Hubert, Pascal and Troubetzkoy, Serge}, title = {Complexity and growth for polygonal billiards}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {835-847}, doi = {10.5802/aif.1903}, mrnumber = {1907389}, zbl = {01794816}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_3_835_0} }
Cassaigne, J.; Hubert, Pascal; Troubetzkoy, Serge. Complexity and growth for polygonal billiards. Annales de l'Institut Fourier, Tome 52 (2002) pp. 835-847. doi : 10.5802/aif.1903. http://gdmltest.u-ga.fr/item/AIF_2002__52_3_835_0/
[BKM] Billiards in polygons, Ann. Prob., Tome 6 (1978), pp. 532-540 | Article | MR 644840 | Zbl 0377.28014
[BP] A geometric proof of the enumeration formula for Sturmian words, J. Alg. Comp., Tome 3 (1993), pp. 349-355 | Article | MR 1240390 | Zbl 0802.68099
[C] Complexité et facteurs spéciaux, Bull. Belgian Math. Soc., Tome 4 (1997), pp. 67-88 | MR 1440670 | Zbl 0921.68065
[CT] Ergodicity of billiards in polygons with pockets, Nonlinearity, Tome 11 (1998), pp. 1095-1102 | Article | MR 1632602 | Zbl 0906.58022
[GKT] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., Tome 169 (1995), pp. 463-473 | Article | MR 1328732 | Zbl 0924.58043
[Gu1] Billiards in polygons, Physica D, Tome 19 (1986), pp. 311-333 | Article | MR 844706 | Zbl 0593.58016
[Gu2] Billiards in polygons: survey of recent results, J. Stat. Phys., Tome 174 (1995), pp. 43-56 | MR 1382759 | Zbl 01554065
[GuH] Topological entropy of generalized interval exchanges, Bull. AMS, Tome 32 (1995), pp. 50-57 | Article | MR 1273398 | Zbl 0879.54023
[GuT] Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems, Montevideo, Uruguay, Longman, Essex (Pitman Research Notes in Math.) Tome 362 (1996) | Zbl 0904.58036
[H] Dynamique symbolique des billards polygonaux rationnels (1995) (Thèse, Université d'Aix-Marseille II)
[H1] Complexité des suites définies par des billards rationnels, Bull. Soc. Math. France, Tome 123 (1995), pp. 257-270 | Numdam | MR 1340290 | Zbl 0836.58013
[H2] Propriétés combinatoires des suites définies par le billard dans les triangles pavants, Theoret. Comput. Sci., Tome 164 (1996), pp. 165-183 | Article | MR 1411203 | Zbl 0871.68146
[HW] An introduction to the theory of numbers, Oxford Univ. Press (1964) | MR 67125 | Zbl 0058.03301
[K] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., Tome 111 (1987), pp. 151-160 | Article | MR 896765 | Zbl 0631.58020
[M1] The growth rate of a quadratic differential, Ergod. Th. Dyn. Sys., Tome 10 (1990), pp. 151-176 | MR 1053805 | Zbl 0706.30035
[M2] Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, Springer-Verlag, Holomorphic functions and moduli, Tome vol. 1 (1988) | MR 955824 | Zbl 0661.30034
[Mi] On the number of factors of Sturmian words, Theor. Comp. Sci., Tome 82 (1991), pp. 71-84 | Article | MR 1112109 | Zbl 0728.68093
[MT] Rational billiards and flat structures (1999) (preprint Max Planck Institut) | MR 1928530 | Zbl 1057.37034
[N] Orbit distribution on under the natural action of (2000) (IML preprint 21) | Zbl 1016.37003
[S] Introduction to ergodic theory, Princeton Univ. Press (1976) | MR 584788 | Zbl 0375.28011
[T] Billiards, Panoramas et Synthèses, Soc. Math. France (1995) | MR 1328336 | Zbl 0833.58001
[Tr] Complexity lower bounds for polygonal billiards, Chaos, Tome 8 (1998), pp. 242-244 | Article | MR 1609769 | Zbl 0986.37030
[V] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Tome 97 (1989), pp. 553-583 | Article | MR 1005006 | Zbl 0676.32006
[V1] The billiard in a regular polygon, Geom. Func. Anal., Tome 2 (1992), pp. 341-379 | Article | MR 1177316 | Zbl 0760.58036