Le “principe de dualité quantique” affirme que la quantification d’une bigèbre de Lie - moyennant une algèbre enveloppante universelle quantifiée (en abrégé, une QUEA) - donne aussi une quantification de la bigèbre de Lie duale (via son groupe de Poisson formel associé) - moyennant une algèbre de Hopf de séries formelles (QFSHA) - et, vice versa, une QFSHA associée à une bigèbre de Lie (via son groupe de Poisson formel associé) donne également une QUEA pour la bigèbre de Lie duale. Plus précisément, il existe deux foncteurs et , inverses l’un de l’autre, tels que dans les deux cas la bigèbre de Lie associée à l’objet cible est la duale de celle de l’objet source. Une version plus faible de ce type de résultats avait été annoncée par Drinfeld, mais aucune preuve ne figure dans la littérature : j’en donne ici une preuve complète et détaillée.
The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors and , inverse to each other, such that in both cases the Lie bialgebra associated to the target object is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems to be unproved in the literature: I give here a thorough detailed proof of it.
@article{AIF_2002__52_3_809_0, author = {Gavarini, Fabio}, title = {The quantum duality principle}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {809-834}, doi = {10.5802/aif.1902}, mrnumber = {1907388}, zbl = {1054.17011}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_3_809_0} }
Gavarini, Fabio. The quantum duality principle. Annales de l'Institut Fourier, Tome 52 (2002) pp. 809-834. doi : 10.5802/aif.1902. http://gdmltest.u-ga.fr/item/AIF_2002__52_3_809_0/
[A] Hopf algebras, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 74 (1980) | MR 594432 | Zbl 0476.16008
[CG] A quantum duality principle for Poisson homogeneous spaces (Preprint)
[Dr] Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986) (1987), pp. 798-820 | Zbl 0667.16003
[E] Quantization of Lie bialgebras and shuffle algebras of Lie algebras (2000) (e-print, math.QA/0008128) | MR 1868300
[EK1] Quantization of Lie bialgebras, I, Selecta Math. (New Series), Tome 2 (1996), pp. 1-41 | Article | MR 1403351 | Zbl 0863.17008
[EK2] Symétries quantiques, (Les Houches, 1995), North-Holland, Amsterdam (1995), pp. 935-946 | Zbl 0962.17008
[FRT] Quantum groups, Algebraic Analysis, Academic Press, Boston (1989), pp. 129-139 | Zbl 0677.17010
[Ga1] Dual affine quantum groups, Math. Zeitschrift, Tome 234 (2000), pp. 9-52 | Article | MR 1759490 | Zbl 1015.17014
[Ga2] The global quantum duality principle: theory, examples, applications (2001) (e-print, math.QA/0108015) | MR 1877138 | Zbl 1224.17021
[KT] Biquantization of Lie bialgebras, Pac. Jour. Math, Tome 195 (2000), pp. 297-369 | Article | MR 1782170 | Zbl 1040.17008
[M] Hopf Algebras and Their Actions on Rings, American Mathematical Society, Providence, RI, CBMS Regional Conference Series in Mathematics, Tome 82 (1993) | MR 1243637 | Zbl 0793.16029