Pour tout tore complexe de dimension 2, nous construisons une variété complexe compacte munie d’une action de qui compactifie de sorte que le quotient de par l’action de soit biholomorphe à . Pour un tore général , nous montrons que n’a pas de fonction méromorphe non constante.
For each 2-dimensional complex torus , we construct a compact complex manifold with a -action, which compactifies such that the quotient of by the -action is biholomorphic to . For a general , we show that has no non-constant meromorphic functions.
@article{AIF_2002__52_1_245_0, author = {Hwang, Jun-Muk and Varolin, Dror}, title = {A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {245-253}, doi = {10.5802/aif.1884}, zbl = {0995.32011}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_1_245_0} }
Hwang, Jun-Muk; Varolin, Dror. A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions. Annales de l'Institut Fourier, Tome 52 (2002) pp. 245-253. doi : 10.5802/aif.1884. http://gdmltest.u-ga.fr/item/AIF_2002__52_1_245_0/
[DPS] Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., Tome 3 (1994), pp. 295-345 | MR 1257325 | Zbl 0827.14027
[G] Äquivariante Kompaktifizierungen des , Math. Zeit., Tome 206 (1991), pp. 211-217 | MR 1091936 | Zbl 0693.32015
[H] Ample subvarieties of algebraic varieties, Springer-Verlag, Berlin-Heidelberg-New York, Lecture Notes in Mathematics, Tome Vol. 156 (1970) | MR 282977 | Zbl 0208.48901
[KP] Formal cohomology, analytic cohomology and non-algebraic manifolds, Compositio Math, Tome 74 (1990), pp. 299-325 | Numdam | MR 1055698 | Zbl 0709.32009
[PS] Compactifications of : A survey, Proc. Symp. Pure Math, Tome 52 (1991) no. Part 2, pp. 455-466 | MR 1128563 | Zbl 0745.32012
[RR] Holomorphic maps from to , Trans. Amer. Math. Soc., Tome 310 (1988), pp. 47-86 | MR 929658 | Zbl 0708.58003