Soit la variété jacobienne de la courbe modulaire associée à et soit l’autre variété associée à . Nous étudions comme un module de Hecke et de Galois. On trouve une relation entre une matrice de périodes -adiques et la variation infinitésimale de l’opérateur .
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
@article{AIF_2002__52_1_1_0, author = {Goldberger, Assaf and Shalit, Ehud de}, title = {Tamely ramified Hida theory}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {1-45}, doi = {10.5802/aif.1875}, mrnumber = {1881569}, zbl = {1048.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_1_1_0} }
Goldberger, Assaf; Shalit, Ehud de. Tamely ramified Hida theory. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1-45. doi : 10.5802/aif.1875. http://gdmltest.u-ga.fr/item/AIF_2002__52_1_1_0/
[ALe] Hecke operators on , Math. Annalen, Tome 185 (1970), pp. 134-160 | Article | MR 268123 | Zbl 0177.34901
[ALi] Twists of newforms and pseudo-eigenvalues of W-operators, Inv. Math., Tome 43 (1978), pp. 221-244 | Article | MR 508986 | Zbl 0369.10016
[B] Abelian varieties from the rigid-analytic viewpoint, Barsotti Symposium in Algebraic Geometry, Academic Press (1994), pp. 51-63 | Zbl 0836.14028
[BLR] Néron models, Springer, Ergebnisse der Math., 3 folge, Tome 21 (1990) | MR 1045822 | Zbl 0705.14001
[DR] Schémas de modules de courbes elliptiques, Springer, LNM, Tome 349 (1973) | MR 337993 | Zbl 0281.14010
[dS1] On certain Galois representations related to the modular curve , Compositio Math., Tome 95 (1995), pp. 69-100 | Numdam | MR 1314697 | Zbl 0853.11045
[dS2] -adic periods and modular symbols of elliptic curves of prime conductor, Inv. Math., Tome 121 (1995), pp. 225-255 | Article | MR 1346205 | Zbl 1044.11576
[dS3] Néron models and p-adic uniformization of generalized Jacobians (In preparation)
[E] L'action de l'algebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est ``Eisenstein'', Astérisque, Tome 196-197 (1991), pp. 59-70 | MR 1141457 | Zbl 0781.14019
[GS] -adic -functions and -adic periods of modular forms, Inv. Math., Tome 111 (1993), pp. 407-447 | Article | MR 1198816 | Zbl 0778.11034
[H] Galois representations into attached to ordinary cusp forms, Inv. Math., Tome 85 (1986), pp. 545-613 | Article | MR 848685 | Zbl 0612.10021
[KM] Arithmetic moduli of elliptic curves, Princeton, Ann. Math. Studies, Tome 108 (1985) | MR 772569 | Zbl 0576.14026
[M] Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S, Tome 47 (1977), pp. 33-186 | Numdam | MR 488287 | Zbl 0394.14008
[MT] Refined conjectures of "Birch and Swinnerton-Dyer type", Duke Math. J., Tome 54 (1987), pp. 711-750 | MR 899413 | Zbl 0636.14004
[MTT] On p-adic analogues of the conjectures of Birch and Swinerton-Dyer, Inv. Math., Tome 84 (1986), pp. 1-48 | Article | MR 830037 | Zbl 0699.14028
[MW1] Class fields of abelian extensions of , Inv. Math., Tome 76 (1984), pp. 179-330 | Article | MR 742853 | Zbl 0545.12005
[MW2] On -adic analytic families of Galois representations, Compositio Math., Tome 59 (1986), pp. 231-264 | Numdam | MR 860140 | Zbl 0654.12008
[Ri] Congruence relations between modular forms, Proc. International Congress of Math., Tome 17 (1983), pp. 503-514 | Zbl 0575.10024
[SGA7] Modéles de Néron et monodromie (exposé IX), SGA 71, Springer (LNM) Tome 288 (1972) | Zbl 0248.14006
[W] Modular elliptic curves and Fermat's last theorem, Ann. of Math., Tome 141 (1995), pp. 443-551 | Article | MR 1333035 | Zbl 0823.11029