Soit une fonction de jauge suffisamment régulière. On dit qu’une mesure signée sur est -Zygmund s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille. De la même manière, on dit que est une mesure - symétrique s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille, . Nous caractérisons les mesures de Zygmund et les mesures symétriques en termes de leurs extensions harmoniques. Nous montrons aussi que la condition quadratique commande l’existence de mesures -Zygmund (-symétriques) singulières. Le cas de la dimension un est bien connu, cependant les démonstrations correspondantes utilisent des techniques d’analyse complexe.
Let be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure is called -Zygmund if there exists a positive constant such that for any pair of adjacent cubes of the same size. Similarly, is called an - symmetric measure if there exists a positive constant such that for any pair of adjacent cubes of the same size, . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition governs the existence of singular -Zygmund (-symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.
@article{AIF_2002__52_1_153_0, author = {Doubtsov, Evgueni and Nicolau, Artur}, title = {Symmetric and Zygmund measures in several variables}, journal = {Annales de l'Institut Fourier}, volume = {52}, year = {2002}, pages = {153-177}, doi = {10.5802/aif.1881}, mrnumber = {1881575}, zbl = {1037.31005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2002__52_1_153_0} }
Doubtsov, Evgueni; Nicolau, Artur. Symmetric and Zygmund measures in several variables. Annales de l'Institut Fourier, Tome 52 (2002) pp. 153-177. doi : 10.5802/aif.1881. http://gdmltest.u-ga.fr/item/AIF_2002__52_1_153_0/
[1] Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc., Tome 79 (1999), pp. 318-352 | Article | MR 1702245 | Zbl 01463593
[2] Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc., Tome 323 (1991) no. 1, pp. 429-448 | Article | MR 979966 | Zbl 0768.46003
[3] Bounded functions in the little Bloch space, Pacific J. Math., Tome 142 (1990), pp. 209-225 | MR 1042042 | Zbl 0652.30024
[4] Intégrale d'aire et supports d'une mesure positive, C.R.A.S. Paris, Ser. I Math., Tome 296 (1983), p. 231-232 | MR 692984 | Zbl 0539.60038
[5] On mappings, conformal at the boundary, J. d'Analyse Math., Tome 19 (1967), pp. 1-13 | Article | MR 215986 | Zbl 0186.13701
[6] On removable singularities for the analytic Zygmund class, Michigan Math. J., Tome 43 (1996), pp. 51-65 | Article | MR 1381599 | Zbl 0862.30035
[7] Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., Tome 60 (1985), pp. 217-246 | Article | MR 800004 | Zbl 0575.42025
[8] Weighted Norm Inequalities and Related Topics, North-Holland, Math. Studies, Tome 116 (1985) | MR 807149 | Zbl 0578.46046
[9] Singular measures and domains not of Smirnov type, Duke Math. J., Tome 33 (1966), pp. 247-254 | Article | MR 199359 | Zbl 0174.37501
[10] The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math., Tome 134 (1991), pp. 65-124 | Article | MR 1114608 | Zbl 0770.35014
[11] Symmetric structures on a closed curve, American J. Math., Tome 114 (1992), pp. 683-736 | Article | MR 1175689 | Zbl 0778.30045
[12] Trois notes sur les ensembles parfaits linéaires, Enseignement Math., Tome 15 (1969), pp. 185-192 | MR 245734 | Zbl 0175.33902
[13] Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach, Potential Analysis, Tome 9 (1998), pp. 229-260 | Article | MR 1666891 | Zbl 0924.31004
[14] Probability methods in the theory of conformal mappings, Leningrad Math. J., Tome 1 (1990), pp. 1-56 | MR 1015333 | Zbl 0736.30006
[15] Two monotonic, singular, uniformly almost smooth functions, Duke Math. J., Tome 33 (1966), pp. 255-262 | Article | MR 199320 | Zbl 0143.07405
[16] Inner functions in the hyperbolic little Bloch class, Michigan Math. J., Tome 45 (1998) no. 1, pp. 103-114 | Article | MR 1617418 | Zbl 0976.30018
[17] Singular integrals and differentiability properties of functions, Princeton Univ. Press (1970) | MR 290095 | Zbl 0207.13501