A geometric approach to on-diagonal heat kernel lower bounds on groups
[Une approche géométrique aux bornes inférieures sur la diagonale du noyau de la chaleur sur les groupes]
Coulhon, Thierry ; Grigor'yan, Alexander ; Pittet, Christophe
Annales de l'Institut Fourier, Tome 51 (2001), p. 1763-1827 / Harvested from Numdam

On introduit une nouvelle méthode pour minorer sur la diagonale les noyaux de la chaleur des groupes de Lie non-compacts et des groupes infinis de type fini. Cette méthode permet de retrouver les bornes inférieures optimales pour les groupes de Lie unimodulaires moyennables et pour certains groupes de type fini, parmi lesquels les groupes polycycliques. Elle permet aussi de donner une interprétation géométrique de ces résultats. On obtient des résultats nouveaux pour certains groupes discrets admettant une structure de produit semi-direct avec groupe quotient abélien ou nilpotent. Parmi ces groupes, on trouvera ceux des transformations affines de la droite réelle engendrés par la translation xx+1 et une homothétie xλx avec λ algébrique. On trouvera aussi certains produits en couronnes, comme les groupes d’allumeurs de réverbères à base nilpotente.

We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product. These include the two- generators groups of affine transformations of the real line xx+1,xλx with λ algebraic, as well as lamplighter groups with nilpotent base.

Publié le : 2001-01-01
DOI : https://doi.org/10.5802/aif.1874
Classification:  58J35,  60G50,  22E30,  20E22
Mots clés: noyaux de la chaleur sur les varietés, marches aléatoires sur les graphes, ensembles de Følner, première valeur propre pour le problème de dirichlet, groupes de Lie, groupes finiment engendrés
@article{AIF_2001__51_6_1763_0,
     author = {Coulhon, Thierry and Grigor'yan, Alexander and Pittet, Christophe},
     title = {A geometric approach to on-diagonal heat kernel lower bounds on groups},
     journal = {Annales de l'Institut Fourier},
     volume = {51},
     year = {2001},
     pages = {1763-1827},
     doi = {10.5802/aif.1874},
     zbl = {01710118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2001__51_6_1763_0}
}
Coulhon, Thierry; Grigor'yan, Alexander; Pittet, Christophe. A geometric approach to on-diagonal heat kernel lower bounds on groups. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1763-1827. doi : 10.5802/aif.1874. http://gdmltest.u-ga.fr/item/AIF_2001__51_6_1763_0/

[1] G.K. Alexopoulos Fonctions harmoniques bornées sur les groupes résolubles, C.R. Acad. Sci. Paris, Tome 305 (1987), pp. 777-779 | MR 921133 | Zbl 0657.31014

[2] G.K. Alexopoulos A lower estimate for central probabilities on polycyclic groups, Can. J. Math., Tome 44 (1992) no. 5, pp. 897-910 | Article | MR 1186471 | Zbl 0762.31003

[3] M.T. Barlow; A. Perkins Symmetric Markov chains in d : how fast can they move?, Probab. Th. Rel. Fields, Tome 82 (1989), pp. 95-108 | Article | MR 997432 | Zbl 0667.60070

[4] L. Bartholdi The growth of Grigorchuk's torsion group, Internat. Math. Res. Notices, Tome 20 (1998), pp. 1049-1054 | Article | MR 1656258 | Zbl 0942.20027

[5] H. Bass The degree of polynomial growth of finitely generated groups, Proc. London Math. Soc., Tome 25 (1972), pp. 603-614 | Article | MR 379672 | Zbl 0259.20045

[6] J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis: A Symposium in honor of Salomon Bochner, Princeton University Press, Princeton (1970), pp. 195-199 | Zbl 0212.44903

[7] F.R.K. Chung Spectral Graph Theory, CBMS, AMS publications (Regional Conference Series in Mathematics) Tome 92 (1996) | Zbl 0867.05046

[8] F.R.K. Chung; A. Grigor'Yan; S.-T. Yau Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom., Tome 8 (2000) no. 5, pp. 969-1026 | MR 1846124 | Zbl 1001.58022

[9] T. Coulhon Ultracontractivity and Nash type inequalities, J. Funct. Anal., Tome 141 (1996), pp. 510-539 | Article | MR 1418518 | Zbl 0887.58009

[10] T. Coulhon Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, Journées équations aux dérivées partielles, St-Jean-de-Monts, Tome II,1-II,12 (1998) | Zbl 1021.35014

[11] T. Coulhon; A. Grigor'Yan On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J., Tome 89 (1997) no. 1, pp. 133-199 | Article | MR 1458975 | Zbl 0920.58064

[12] T. Coulhon; A. Grigor'Yan Random walks on graphs with regular volume growth, Geom. and Funct. Analysis, Tome 8 (1998), pp. 656-701 | Article | MR 1633979 | Zbl 0918.60053

[13] T. Coulhon; L. Saloff-Coste Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, Tome 9 (1993) no. 2, pp. 293-314 | Article | MR 1232845 | Zbl 0782.53066

[14] E.B. Davies Heat kernels and spectral theory, Cambridge University Press (1989) | MR 990239 | Zbl 0699.35006

[15] J. Dodziuk Difference equations, isoperimetric inequalities and transience of certain random walks, Trans. Amer. Math. Soc., Tome 284 (1984), pp. 787-794 | Article | MR 743744 | Zbl 0512.39001

[16] A. Grigor'Yan Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, Tome 10 (1994) no. 2, pp. 395-452 | Article | MR 1286481 | Zbl 0810.58040

[17] A. Grigor'Yan Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., Tome 36 (1999), pp. 135-249 | Article | MR 1659871 | Zbl 0927.58019

[18] A. Grigor'Yan; M. Kelbert On Hardy-Littlewood inequality for Brownian motion on Riemannian manifolds, J. London Math. Soc. (2), Tome 62 (2000), pp. 625-639 | Article | MR 1783649 | Zbl 1026.58028

[19] R.I. Grigorchuk Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR, Ser. Mat., Tome 49 (1984) no. 5, pp. 939-985 | MR 764305 | Zbl 0583.20023

[19] R.I. Grigorchuk Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR-Izv. (English transl.), Tome 25 (1985), pp. 259-300 | Article | MR 764305 | Zbl 0583.20023

[20] M. Gromov Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S., Tome 53 (1981), pp. 53-73 | Numdam | MR 623534 | Zbl 0474.20018

[21] Y. Guivarc'H Croissance polynomiale et période des fonctions harmoniques, Bull. Soc. Math. France, Tome 101 (1973), pp. 333-379 | Numdam | MR 369608 | Zbl 0294.43003

[22] W. Hebisch On heat kernels on Lie groups, Math. Zeit., Tome 210 (1992), pp. 593-605 | Article | MR 1175724 | Zbl 0792.22007

[23] W. Hebisch; L. Saloff-Coste Gaussian estimates for Markov chains and random walks on groups, Ann. Prob., Tome 21 (1993), pp. 673-709 | Article | MR 1217561 | Zbl 0776.60086

[24] J. Jenkins Growth of connected locally compact groups, J. Funct. Anal., Tome 12 (1973), pp. 113-127 | Article | MR 349895 | Zbl 0247.43001

[25] V.A. Kaimanovich; A.M. Vershik Random walks on discrete groups: boundary and entropy, Ann. Prob., Tome 11 (1983) no. 3, pp. 457-490 | Article | MR 704539 | Zbl 0641.60009

[26] H. Kesten Symmetric random walks on groups, Trans. Amer. Math. Soc., Tome 92 (1959), pp. 336-354 | Article | MR 109367 | Zbl 0092.33503

[27] F. Lust-Piquard Lower bounds on K n 1 for some contractions K of L 2 (μ), with some applications to Markov operators, Math. Ann., Tome 303 (1995), pp. 699-712 | Article | MR 1359956 | Zbl 0836.47021

[28] V.G. Maz'Ya Sobolev spaces, Springer, Izdat. Leningrad Gos. Univ. Leningrad (1985) | MR 817985 | Zbl 0727.46017

[29] G.D. Mostow On the fundamental group of a homogeneous space, Ann. Math., Tome 66 (1957) no. 2, pp. 249-255 | Article | MR 88675 | Zbl 0093.03402

[30] Ch. Pittet Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana, Tome 11 (1995) no. 3, pp. 675-686 | Article | MR 1363210 | Zbl 0842.20035

[31] Ch. Pittet The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geom., Tome 54 (2000) no. 2, pp. 255-302 | MR 1818180 | Zbl 1035.53069

[32] Ch. Pittet; L. Saloff-Coste A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples (1997) (Preprint)

[33] Ch. Pittet; L. Saloff-Coste; Eds. J. Cossey, C.F. Miller Iii, W.D. Neumann And M. Shapiro Amenable groups, isoperimetric profiles and random walks, Geometric group theory down under. Proceedings of a special year in geometric group theory, Canberra, Australia, 1996, Walter De Gruyter (1999) | Zbl 0934.43001

[34] Ch. Pittet; L. Saloff-Coste On the stability of the behavior of random walks on groups, J. Geom. Anal., Tome 10 (2000) no. 4, pp. 713-737 | Article | MR 1817783 | Zbl 0985.60043

[35] Ch. Pittet; L. Saloff-Coste On random walks on wreath products (To appear in Annals Proba) | Zbl 1021.60004

[36] M.S. Raghunathan Discrete subgroups of Lie groups, Springer, Berlin, Ergebnisse der Mathematik, Tome 68 (1972) | MR 507234 | Zbl 0254.22005

[37] D.J.S. Robinson A course in the theory of groups, Springer, Graduate texts in Mathematics (1993) | MR 1261639 | Zbl 0836.20001

[38] D. Segal Polycyclic groups, Cambridge Tracts in Mathematics, Tome 82 (1983) | MR 713786 | Zbl 0516.20001

[39] D.W. Stroock; Eds. L.H.Y. Chen, K.P. Choi, K. Hu And J.H. Lou Estimates on the heat kernel for the second order divergence form operators, Probability theory. Proceedings of the 1989 Singapore Probability Conference held at the National University of Singapore, June 8-16 1989, Walter De Gruyter (1992), pp. 29-44 | Zbl 0779.60065

[40] J. Tits Appendix to Gromov M., Groups of polynomial growth and expanding maps, Publ. Math.I.H.E.S., Tome 53 (1981), pp. 74-78 | Numdam | MR 623535 | Zbl 0474.20018

[41] N.Th. Varopoulos A potential theoretic property of soluble groups, Bull. Sci. Math., 2e série, Tome 108 (1983), pp. 263-273 | MR 771912 | Zbl 0546.60008

[42] N.Th. Varopoulos Random walks on soluble groups, Bull. Sc. Math., 2e série, Tome 107 (1983), pp. 337-344 | MR 732356 | Zbl 0532.60009

[43] N.Th. Varopoulos Convolution powers on locally compact groups, Bull. Sc. Math., 2e série, Tome 111 (1987), pp. 333-342 | MR 921558 | Zbl 0626.22004

[44] N.Th. Varopoulos Analysis on Lie groups, J. Funct. Anal., Tome 76 (1988), pp. 346-410 | Article | MR 924464 | Zbl 0634.22008

[45] N.Th. Varopoulos Groups of superpolynomial growth, Proceedings of the ICM satellite conference on Harmonic analysis, Springer (1991) | Zbl 0802.43002

[46] N.Th. Varopoulos Diffusion on Lie groups II, Can. J. Math., Tome 46 (1994) no. 5, pp. 1073-1092 | Article | MR 1295132 | Zbl 0829.22013

[47] N.Th. Varopoulos; L. Saloff-Coste; T. Coulhon Analysis and geometry on groups, Cambridge University Press, Cambridge (1992) | MR 1218884 | Zbl 0813.22003

[48] W. Woess Random walks on infinite graphs and groups, Cambridge Univ. Press, Cambridge Tracts in Mathematics, Tome 138 (2000) | MR 1743100 | Zbl 0951.60002