Habituellement le produit de copies d’un espace arbitraire ne soutient que l’action de permutation du groupe symétrique . Cependant, si est un -espace, - complet, associatif et commutatif à homotopie près on peut définir une action à homotopie près de sur . Dans divers cas, par exemple, si la multiplication par est nulle homotopique, on obtient une action à homotopie près de pour certains . Après une suspension cela permet de décomposer en utilisant des idempotents de qui peuvent être relevés sur . En fait, tout ceci est possible si est un -espace pour lequel l’algèbre est commutative et nilpotente. Pour nous faisons des calculs explicites de décomposition de , ,et .
The -fold product of an arbitrary space usually supports only the obvious permutation action of the symmetric group . However, if is a -complete, homotopy associative, homotopy commutative -space one can define a homotopy action of on . In various cases, e.g. if multiplication by is null homotopic then we get a homotopy action of for some . After one suspension this allows one to split using idempotents of which can be lifted to . In fact all of this is possible if is an -space whose homology algebra is commutative and nilpotent. For we make some explicit calculations of splittings of , ,and .
@article{AIF_2001__51_6_1719_0, author = {Levi, Ran and Priddy, Stewart}, title = {On certain homotopy actions of general linear groups on iterated products}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1719-1739}, doi = {10.5802/aif.1872}, mrnumber = {1871287}, zbl = {0990.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_6_1719_0} }
Levi, Ran; Priddy, Stewart. On certain homotopy actions of general linear groups on iterated products. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1719-1739. doi : 10.5802/aif.1872. http://gdmltest.u-ga.fr/item/AIF_2001__51_6_1719_0/
[1] Polynomial Invariants of Finite Groups, L.M.S. Lecture Notes in Mathematics, Tome 190 (1993) | MR 1233169 | Zbl 0864.13001
[2] Homotopy Limits, Completions and Localizations, Springer Lecture Notes in Mathematics, Tome 304 (1972) | Article | MR 365573 | Zbl 0259.55004
[3] Nilpotence and stable homotopy theory. I, Ann. of Math. (2), Tome 128 (1988), pp. 207-241 | Article | MR 960945 | Zbl 0673.55008
[4] Stable decompositions of classifying spaces of finite abelian -groups, Math. Proc. Camb. Phil. Soc., Tome 103 (1988), pp. 427-449 | Article | MR 932667 | Zbl 0686.55007
[5] The transfer and Whitehead's conjecture, Math. Proc. Cambridge Philos. Soc., Tome 98 (1985), pp. 459-480 | Article | MR 803606 | Zbl 0584.55007
[6] A new infinite family in , Topology, Tome 16 (1977), pp. 249-256 | Article | MR 445498 | Zbl 0357.55020
[7] On the Steinberg module, representations of the symmetric groups, and the Steenrod algebra, J. Pure Appl. Algebra, Tome 39 (1986), pp. 275-281 | Article | MR 821892 | Zbl 0593.20006
[8] Finite complexes with -free cohomology, Topology, Tome 24 (1985), pp. 227-246 | Article | MR 793186 | Zbl 0568.55021
[9] Stable splittings derived from the Steinberg module, Topology, Tome 22 (1983), pp. 219-232 | MR 710102 | Zbl 0526.55010