On suppose que est une fonction analytique-réelle plurisousharmonique sur une variété complexe connexe et non-compacte . Le résultat principal démontre que si l’ensemble analytique-réel des points où n’est pas fortement -convexe est de dimension ou moins, alors presque tous les sous-niveaux assez grands de sont des variétés complexes fortement -convexes. Pour de dimension 2, c’est un cas spécial d’un théorème de Diederich et Ohsawa. Nous obtenons aussi une version de ce résultat dans le cas où est analytique réelle avec coins.
Suppose is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold . The main result is that if the real analytic set of points at which is not strongly -convex is of dimension at most , then almost every sufficiently large sublevel of is strongly -convex as a complex manifold. For of dimension , this is a special case of a theorem of Diederich and Ohsawa. A version for real analytic with corners is also obtained.
@article{AIF_2001__51_6_1553_0, author = {Napier, Terrence and Ramachandran, Mohan}, title = {Generically strongly $q$-convex complex manifolds}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1553-1598}, doi = {10.5802/aif.1866}, mrnumber = {1870640}, zbl = {0996.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_6_1553_0} }
Napier, Terrence; Ramachandran, Mohan. Generically strongly $q$-convex complex manifolds. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1553-1598. doi : 10.5802/aif.1866. http://gdmltest.u-ga.fr/item/AIF_2001__51_6_1553_0/
[Ba1] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75, Springer, Berlin-Heidelberg-New York (Lecture Notes in Math.) Tome vol. 482 (1975), pp. 1-158 | Zbl 0331.32008
[Ba2] Convexité de l'espace des cycles, Bull. Soc. Math. France, Tome 106 (1978), pp. 373-397 | Numdam | MR 518045 | Zbl 0395.32009
[Bi] Conditions for the analyticity of certain sets, Michigan Math. J., Tome 11 (1964), pp. 289-304 | Article | MR 168801 | Zbl 0143.30302
[BrC1] Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris, Tome 244 (1957), pp. 988-990 | MR 86108 | Zbl 0081.17201
[BrC2] Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris, Tome 244 (1957), pp. 1123-1126 | MR 88528 | Zbl 0081.39101
[BrW] Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv., Tome 33 (1959), pp. 132-160 | Article | MR 102094 | Zbl 0100.08101
[Cam] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, Tome 122 (1994) no. 2, pp. 255-284 | Numdam | MR 1273904 | Zbl 0810.32013
[Car] Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) | Zbl 0122.08702
[Co] Complete locally pluripolar sets, J. reine and angew. Math., Tome 412 (1990), pp. 108-112 | Article | MR 1074376 | Zbl 0711.32008
[De1] Estimations pour l'opérateur d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup., Tome 15 (1982), pp. 457-511 | Numdam | MR 690650 | Zbl 0507.32021
[De2] Cohomology of q-convex spaces in top degrees, Math. Z., Tome 204 (1990), pp. 283-295 | Article | MR 1055992 | Zbl 0682.32017
[DiF1] Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math., Tome 39 (1977), pp. 129-141 | Article | MR 437806 | Zbl 0353.32025
[DiF2] Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J., Tome 44 (1977), pp. 641-662 | Article | MR 447634 | Zbl 0381.32014
[DiF3] Pseudoconvex domains with real-analytic boundary, Ann. Math., Tome 107 (1978), pp. 371-384 | Article | MR 477153 | Zbl 0378.32014
[DiO] A Levi problem on two-dimensional complex manifolds, Math. Ann., Tome 261 (1982), pp. 255-261 | Article | MR 675738 | Zbl 0502.32010
[DoG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Tome 140 (1960), pp. 94-123 | Article | MR 148939 | Zbl 0095.28004
[Fr] Local complex foliation of real submanifolds, Math. Ann., Tome 209 (1974), pp. 1-30 | Article | MR 346185 | Zbl 0267.32006
[Fu] Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., Tome 14 (1978/79) no. 1, pp. 1-52 | Article | MR 486648 | Zbl 0409.32016
[G] On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., Tome 68 (1958), pp. 460-472 | Article | MR 98847 | Zbl 0108.07804
[GR] Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969), Princeton University Press, Princeton (1970), pp. 61-79 | Zbl 0211.10302
[GW] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Tome 25 (1975) no. 1, pp. 215-235 | Article | Numdam | MR 382701 | Zbl 0307.31003
[HM] Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J, Tome 25 (1978), pp. 299-316 | Article | MR 512901 | Zbl 0378.32013
[Hu] The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann., Tome 219 (1976), pp. 127-137 | Article | MR 409892 | Zbl 0313.32017
[L] Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V, Tome 14 (1905), pp. 492-499
[Na] Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto, Tome 10 (1974), pp. 101-110 | Article | MR 382735 | Zbl 0298.32019
[NR1] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal., Tome 5 (1995), pp. 809-851 | Article | MR 1354291 | Zbl 0860.53045
[NR2] The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 5, pp. 1345-1365 | Article | Numdam | MR 1600387 | Zbl 0904.32008
[Ns] The Levi problem for complex spaces II, Math. Ann., Tome 146 (1962), pp. 195-216 | Article | MR 182747 | Zbl 0131.30801
[O] Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto, Tome 20 (1984), pp. 683-692 | Article | MR 759689 | Zbl 0568.32008
[Re] Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) | Zbl 0095.06204
[Ri] Stetige streng pseudokonvexe Funktionen, Math. Ann., Tome 175 (1968), pp. 257-286 | Article | MR 222334 | Zbl 0153.15401
[Si1] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Tome 38 (1976), pp. 89-100 | Article | MR 435447 | Zbl 0343.32014
[Si2] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Tome 17 (1982), pp. 55-138 | MR 658472 | Zbl 0497.32025
[Ste] Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974, Springer, Berlin-Heidelberg-New York (Lect. Notes in Math.) Tome vol. 474 (1975), pp. 155-179 | Zbl 0309.32011
[Sto] The fiber integral is constant, Math. Zeitsch., Tome 104 (1968), pp. 65-73 | Article | MR 224868 | Zbl 0164.09302
[Wu] On certain Kähler manifolds which are -complete, Complex analysis of Several Variables, Amer. Math. Soc., Providence (Proceedings of Symposia in Pure Mathematics) Tome vol. 41 (1984), pp. 253-276 | Zbl 0552.32015