Dans le cas de certains domaines non simplement connexes, nous établissons l'existence et la résidualité de fonctions universelles par rapport à un centre. Nous examinons aussi l'analogue de la conjecture de Kahane.
We establish certain properties for the class of universal functions in with respect to the center , for certain types of connected non-simply connected domains . In the case where is discrete we prove that this class is -dense in , depends on the center and that the analog of Kahane’s conjecture does not hold.
@article{AIF_2001__51_6_1539_0, author = {Melas, Antonios D.}, title = {Universal functions on nonsimply connected domains}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1539-1551}, doi = {10.5802/aif.1865}, mrnumber = {1870639}, zbl = {0989.30003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_6_1539_0} }
Melas, Antonios D. Universal functions on nonsimply connected domains. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1539-1551. doi : 10.5802/aif.1865. http://gdmltest.u-ga.fr/item/AIF_2001__51_6_1539_0/
[1] Some remarks on universal functions and Taylor series, Math. Proc. of the Cambr. Phil. Soc., Tome 128 (2000), pp. 157-175 | Article | MR 1724436 | Zbl 0956.30003
[2] Universal families and hypercyclic operators, Bull. of the AMS, Tome 36 (1999) no. 3, pp. 345-381 | Article | MR 1685272 | Zbl 0933.47003
[3] Baire's category Theorem and Trigonometric series, Jour. Anal. Math., Tome 80 (2000), pp. 143-182 | Article | MR 1771526 | Zbl 0961.42001
[4] Universal approximation properties of overconvergent power series on open sets, Analysis, Tome 6 (1986), pp. 191-207 | MR 832744 | Zbl 0589.30003
[5] Universality of Taylor series as a generic property of holomorphic functions, Adv. in Math., Tome 157 (2001) no. 2, pp. 138-176 | Article | MR 1813429 | Zbl 0985.30023
[6] Universal Taylor series, Ann. Inst. Fourier, (Grenoble), Tome 46 (1996) no. 5, pp. 1293-1306 | Article | Numdam | MR 1427126 | Zbl 0865.30001
[7] An extension of the notion of universal Taylor series, Proceedings CMFT'97, Nicosia, Cyprus, Oct. (1997) | Zbl 0942.30003
[8] A universal Taylor series in the doubly connected domain (Submitted) | Zbl 1049.30002