Sous l’hypothèse qu’une certaine inégalité de Sobolev est satisfaite, nous montrons qu’une inégalité de Harnack elliptique uniforme implique sa version parabolique. Ni l’inégalité de Sobolev ni l’inégalité de Harnack elliptique, n’implique à elle seule l’inégalité de Harnack parabolique en question; chacune est une condition nécessaire. En conséquence, nous obtenons l’équivalence entre l’inégalité de Harnack parabolique pour le laplacien sur une variété riemannienne , (i.e., pour ) et l’inégalité de Harnack elliptique pour sur .
We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for on , (i.e., for ) and elliptic Harnack inequality for on .
@article{AIF_2001__51_5_1437_0, author = {Hebisch, Waldemar and Saloff-Coste, Laurent}, title = {On the relation between elliptic and parabolic Harnack inequalities}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1437-1481}, doi = {10.5802/aif.1861}, mrnumber = {1860672}, zbl = {0988.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_5_1437_0} }
Hebisch, Waldemar; Saloff-Coste, Laurent. On the relation between elliptic and parabolic Harnack inequalities. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1437-1481. doi : 10.5802/aif.1861. http://gdmltest.u-ga.fr/item/AIF_2001__51_5_1437_0/
[1] Invariant varieties through singularities of holomorphic vector fields, Annals of Math., Tome 115 (1982) | MR 657239 | Zbl 0503.32007
[1] Gaussian bounds for random walks from elliptic regularity, Ann. Inst. Henri Poincaré, Prob. Stat., Tome 35 (1999), pp. 605-630 | Article | Numdam | MR 1705682 | Zbl 0933.60047
[2] Sobolev Inequalities in Disguise, Indiana Univ. Math. J., Tome 44 (1995), pp. 1033-1073 | MR 1386760 | Zbl 0857.26006
[3] Diffusions on fractals, Lectures in Probability Theory and Statistics Ecole d'été de Probabilités de Saint Flour XXV-- 1995, Springer (Lecture Notes in Math.) Tome 1690 (1998), pp. 1-121 | Zbl 0916.60069
[4] Transition densities for Brownian motion on the Sierpinski carpet, Probab. Th. Rel. Fields, Tome 91 (1992), pp. 307-330 | Article | MR 1151799 | Zbl 0739.60071
[5] Random walks on graphical Sierpinski carpets, Cambridge University Press, Symposia Mathematica, Tome 39 (1999) | MR 1802425 | Zbl 0958.60045
[6] On and off-diagonal heat kernel behaviors on certain infinite dimensional local Dirichlet spaces, American J. Math., Tome 122 (2000), pp. 1205-1263 | Article | MR 1797661 | Zbl 0969.31008
[7] Markov Processes and Potential Theory, Academic Press, New York and London (1968) | MR 264757 | Zbl 0169.49204
[8] Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Soc. Math. France, Séminaires et Congrés, Tome 1 (1996), pp. 205-232 | Zbl 0884.58088
[9] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Tome 17 (1982), pp. 15-53 | MR 658471 | Zbl 0493.53035
[10] On-diagonal lower bounds for heat kernels and Markov chains, Duke Math. J., Tome 89 (1997), pp. 133-199 | Article | MR 1458975 | Zbl 0920.58064
[11] Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, Tome 11 (1995), pp. 687-726 | Article | MR 1363211 | Zbl 0845.58054
[12] Heat kernels and spectral theory, Cambridge University Press (1989) | MR 990239 | Zbl 0699.35006
[13] Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math, Tome 58 (1992), pp. 99-119 | Article | MR 1226938 | Zbl 0808.58041
[14] Non-Gaussian aspects of Heat kernel behaviour, J. London Math. Soc., Tome 55 (1997), pp. 105-125 | Article | MR 1423289 | Zbl 0879.35064
[15] Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana, Tome 15 (1999), pp. 181-232 | Article | MR 1681641 | Zbl 0922.60060
[16] Elliptic and parabolic Harnack inequalities (Potential Analysis, to appear) | MR 1881595 | Zbl 1081.39012
[17] A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rat, Mech. Anal., Tome 96 (1986), pp. 327-338 | MR 855753 | Zbl 0652.35052
[18] Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. in Partial Differential Equations, Tome 19 (1994), pp. 523-604 | Article | MR 1265808 | Zbl 0822.46032
[19] Dirichlet forms and Symmetric Markov processes, W. de Gruyter (1994) | MR 1303354 | Zbl 0838.31001
[20] The heat equation on non-compact Riemannian manifolds (Matem. Sbornik) Tome 182 (1991), pp. 55-87 | Zbl 0743.58031
[20] The heat equation on non-compact Riemannian manifolds, Math. USSR Sb. (Engl. Transl.), Tome 72 (1992), pp. 47-77 | Article | MR 1098839 | Zbl 0776.58035
[21] Heat kernel upper bounds on a complete non-compact Riemannian manifold, Revista Mat. Iberoamericana, Tome 10 (1994), pp. 395-452 | Article | MR 1286481 | Zbl 0810.58040
[22] Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geometry, Tome 45 (1997), pp. 33-52 | MR 1443330 | Zbl 0865.58042
[23] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. A.M.S, Tome 36 (1999), pp. 135-249 | Article | MR 1659871 | Zbl 0927.58019
[24] Estimates of heat kernels on Riemannian manifolds, Spectral Theory and Geometry, Cambridge University Press (London Math. Soc. Lecture Note Series) Tome 273 (1999) | Zbl 0985.58007
[25] Heat kernel on connected sums of Riemannian manifolds, Mathematical Research Letters, Tome 6 (1999), pp. 1-14 | MR 1713132 | Zbl 0957.58023
[26] Sub-Gaussian estimates of heat kernels on infinite graphs (2000) (Preprint) | MR 1853353 | Zbl 1010.35016
[27] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (1998) | MR 1699320 | Zbl 05114904
[28] The Poincaré inequality for vector fields satisfying the Hörmander's condition, Duke Math. J., Tome 53 (1986), pp. 503-523 | MR 850547 | Zbl 0614.35066
[29] A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR-Izs, Tome 16 (1981), pp. 151-164 | Article | Zbl 0464.35035
[30] Applications of Malliavin Calculus, Part 3, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Tome 34 (1987), pp. 391-442 | MR 914028 | Zbl 0633.60078
[31] Counterexamples to Liouville-type theorems (Vestnik Moskov. Univ., Ser. I Mat. Mekh.) Tome 6 (1976), pp. 39-43 | Zbl 0416.35033
[31] Counterexamples to Liouville-type theorems, Moscow Univ. Math. Bull. (Engl. Transl.), Tome 34 (1979), pp. 35-39 | Zbl 0442.35038
[32] On the parabolic kernel of Schrödinger operator, Acta Math., Tome 156 (1986), pp. 153-201 | Article | MR 834612 | Zbl 0611.58045
[33] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., Tome 14 (1961), pp. 577-591 | Article | MR 159138 | Zbl 0111.09302
[34] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., Tome 16 ; 20 (1964 ; 1967), p. 101-134 ; 231--236 | Article | MR 159139 | Zbl 0149.06902
[35] On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math., Tome 24 (1971), pp. 727-740 | Article | MR 288405 | Zbl 0227.35016
[36] Harnack's inequality for elliptic equations and the Hölder property of their solutions, J. Soviet Math., Tome 21 (1983), pp. 851-863 | Article | Zbl 0511.35029
[37] Analyse sur les groupes à croissance polynomiale, Ark. för Mat., Tome 28 (1990), pp. 315-331 | Article | MR 1084020 | Zbl 0715.43009
[38] Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal., Tome 98 (1991), pp. 97-121 | Article | MR 1111195 | Zbl 0734.58041
[39] Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom., Tome 36 (1992), pp. 417-450 | MR 1180389 | Zbl 0735.58032
[40] A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J., IMRN, Tome 2 (1992), pp. 27-38 | MR 1150597 | Zbl 0769.58054
[41] Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis, Tome 4 (1995), pp. 429-467 | Article | MR 1354894 | Zbl 0840.31006
[42] Aspects of Sobolev type inequalities (2001) (To appear in London Math. Soc. Lecture Notes Series, Cambridge University Press) | MR 1872526 | Zbl 0991.35002
[43] On the geometry defined by Dirichlet forms, Seminar on Stochastic Processes, Random Fields and Applications, Ascona, Birkhäuser (Progress in Probability) Tome vol. 36 (1995), pp. 231-242 | Zbl 0834.58039
[44] Analysis on local Dirichlet spaces I: Recurrence, conservativeness and -Liouville properties, J. Reine Angew. Math., Tome 456 (1994), pp. 173-196 | Article | MR 1301456 | Zbl 0806.53041
[45] Analysis on local Dirichlet spaces II. Upper Gaussian estimates for fundamental solutions of parabolic equations, Osaka J. Math., Tome 32 (1995), pp. 275-312 | MR 1355744 | Zbl 0854.35015
[46] Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl., Tome 75 (1996), pp. 273-297 | MR 1387522 | Zbl 0854.35016
[47] Local sub-Gaussian estimates of heat kernels on graphs, the strongly recurrent cases (2000) (Preprint)
[48] Fonctions harmoniques sur les groupes de Lie, CR. Acad. Sci. Paris, Sér. I Math., Tome 304 (1987), pp. 519-521 | MR 892879 | Zbl 0614.22002
[49] Small time Gaussian estimates of the heat diffusion kernel, Part 1: the semigroup technique, Bull. Sci. Math., Tome 113 (1989), pp. 253-277 | MR 1016211 | Zbl 0703.58052
[50] Analysis and geometry on groups, Cambridge University Press (1993) | MR 1218884 | Zbl 0813.22003