Reducible representations of abelian groups
[Représentations réductibles des groupes abéliens]
Atzmon, Aharon
Annales de l'Institut Fourier, Tome 51 (2001), p. 1407-1418 / Harvested from Numdam

Nous établissons un critère de réductibilité pour certaines représentations des groupes abéliens. Parmi les applications de ce critère, nous donnons une réponse positive au problème du sous-espace invariant par translation pour les espaces L p pondérés sur les groupes abéliens localement compacts, lorsque les poids sont pairs et 1<p<.

A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted L p spaces on locally compact abelian groups, for even weights and 1<p<.

Publié le : 2001-01-01
DOI : https://doi.org/10.5802/aif.1859
Classification:  43A65,  43A15,  47A15,  47B37
Mots clés: groupes abéliens, représentations réductibles, sous-espaces invariants par translation
@article{AIF_2001__51_5_1407_0,
     author = {Atzmon, Aharon},
     title = {Reducible representations of abelian groups},
     journal = {Annales de l'Institut Fourier},
     volume = {51},
     year = {2001},
     pages = {1407-1418},
     doi = {10.5802/aif.1859},
     mrnumber = {1860670},
     zbl = {0980.43005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2001__51_5_1407_0}
}
Atzmon, Aharon. Reducible representations of abelian groups. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1407-1418. doi : 10.5802/aif.1859. http://gdmltest.u-ga.fr/item/AIF_2001__51_5_1407_0/

[1] C. Apostol Hyperinvariant subspaces for bilateral weighted shifts, Integral Equations and Operator Theory, Tome 7 (1984), pp. 1-9 | MR 802365 | Zbl 0574.47005

[2] A. Atzmon The existence of hyperinvariant subspaces, J. Operator Theory, Tome 11 (1984), pp. 3-40 | MR 739792 | Zbl 0583.47009

[3] A. Atzmon An operator on a Fréchet space with no common invariant subspace with its inverse, J. Funct. Anal., Tome 55 (1984), pp. 68-77 | Article | MR 733034 | Zbl 0552.47006

[4] A. Atzmon Irreducible representations of abelian groups, Proceedings, Harmonic Analysis, Springer-Verlag, Berlin (Lecture Notes in Mathematics) Tome 1359 (1987), pp. 83-92 | MR 974305 | Zbl 0681.47017

[5] A. Atzmon Entire functions, invariant subspaces and Fourier transforms, Israel Math. Conf. Proc., Tome 11 (1997), pp. 37-52 | MR 1476702 | Zbl 0907.30029

[6] A. Atzmon; M. Sodin Completely indecomposable operators and a uniqueness theorem of Cartwright-Levinson type, J. Funct. Anal., Tome 169 (1999), pp. 164-188 | Article | MR 1726751 | Zbl 0945.47012

[7] A. Atzmon; M. Sodin Addendum to the paper ``Completely indecomposable operators and a uniqueness theorem of Cartwright-Levinson type", J. Funct. Anal., Tome 175 (2000), p. 248-249 | Article | MR 1774858 | Zbl 0989.47010

[8] A. Atzmon The existence of translation invariant subspaces of symmetric self-adjoint sequence spaces on , J. Funct. Anal., Tome 178 (2000), pp. 372-380 | Article | MR 1802899 | Zbl 0978.47022

[9] J. Bracconier L'analyse harmonique dans les groupes abélien, L'enseignement Mathématique, Tome II (1956) no. 5 | MR 84709 | Zbl 0070.02603

[10] B. Chevreau; C.M. Pearcy; A.L. Shields Finitely connected domains G, representations of H ( G ) , and invariant subspaces, J. Operator Theory, Tome 6 (1981), pp. 375-405 | MR 643698 | Zbl 0525.47004

[11] R. Deville; G. Godefroy; V. Zizler Smoothness and renorming in Banach spaces, Longman, Harlow, Pitman monographs and surveys, Tome 64 (1993) | Zbl 0782.46019

[12] Y. Domar On the existence of nontrivial or nonstandard translation invariant subspaces of weighted p and L p , 18th Scandinavian Congress of Mathematics (Aarhus, 1980) (Progress in Mathematics) Tome 11 (1981), pp. 226-235 | Zbl 0468.47003

[13] Y. Domar Translation invariant subspaces of weighted p and L p spaces, Math. Scand., Tome 49 (1981), pp. 133-144 | MR 645094 | Zbl 0443.47030

[14] Y. Domar Translation invariant subspaces of weighted L p , Proceeding, Commutative Harmonic Analysis, A.M.S., Providence, R.I. (Contemporary Mathematics) Tome 91 (1987) | Zbl 0688.47002

[15] Y. Domar Entire functions of order 1 with bounds on both axes, Ann. Acad. Sci. Fenn. Math., Tome 22 (1997), pp. 339-348 | MR 1469795 | Zbl 0913.30017

[16] J. Esterlé Singular inner functions and biinvariant subspaces for disymmetric weighted shifts, J. Funct. Anal., Tome 144 (1997), pp. 61-104 | MR 1430716 | Zbl 0938.47003

[17] J. Esterlé; A. Volberg Sous-espaces invariant par translations bilatérales de certains espaces de Hilbert de suites quasianalytiquement pondérées, C.R. Acad. Sci. Paris, Série I, Tome 326 (1998), pp. 295-300 | MR 1648437 | Zbl 0919.47009

[18] J. Esterlé; A. Volberg Analytic left-invariant subspaces of weighted Hilbert spaces of sequences (J. Operator Theory, to appear) | Zbl 1002.47001

[19] J. Esterlé; A. Volberg Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences (To appear in Ann. Sci. École Norm. Sup.) | Numdam | Zbl 1059.47034

[20] R. Gellar; D. Herrero Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ. Math. J., Tome 23 (1974), pp. 771-790 | Article | MR 331083 | Zbl 0253.46128

[21] G. Köthe Topological vector spaces I, Springer-Verlag, New York (1969) | Zbl 0179.17001

[22] J. Lindenstrauss On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., Tome 72 (1966), pp. 967-970 | Article | MR 205040 | Zbl 0156.36403

[23] C.J. Read A solution to the invariant subspace problem in the space 1 , Bull. London Math. Soc., Tome 17 (1985), pp. 305-317 | Article | MR 806634 | Zbl 0574.47006

[24] A.L. Shields Weighted shift operators and analytic function theory, Topics in Operator Theory, AMS Math. Surveys, Providence, R.I. (Amer. Math Soc.) Tome 13 (1974) | Zbl 0303.47021