Soient une variété compacte à bord, et une métrique de diffusion sur qui est soit à courte portée, soit à longue portée du type gravitationnel. Alors est une variété riemannienne complète asymptotiquement conique. Nous considérons l’opérateur , où est le laplacien de et est un opérateur différentiel de diffusion du premier ordre (formellement) auto-adjoint à coefficients s’annulant sur et satisfaisant une condition gravitationnelle. Nous définissons un calcul symbolique pour les distributions de Legendre sur les variétés compactes à coins de codimension deux, et nous l’utilisons pour une construction directe du noyau de la résolvante de , , pour . Cette approche n’utilise pas le principe d’absorption limite. Au lieu de cela nous construisons une paramétrixe qui satisfait l’équation de la résolvante à un terme d’erreur compacte près qui est éliminé grâce à la théorie de Fredholm.
Let be a compact manifold with boundary, and a scattering metric on , which may be either of short range or “gravitational” long range type. Thus, gives the geometric structure of a complete manifold with an asymptotically conic end. Let be an operator of the form , where is the Laplacian with respect to and is a self-adjoint first order scattering differential operator with coefficients vanishing at and satisfying a “gravitational” condition. We define a symbol calculus for Legendre distributions on manifolds with codimension two corners and use it to give a direct construction of the resolvent kernel of , , for on the positive real axis. In this approach, we do not use the limiting absorption principle at any stage; instead we construct a parametrix which solves the resolvent equation up to a compact error term and then use Fredholm theory to remove the error term.
@article{AIF_2001__51_5_1299_0, author = {Hassell, Andrew and Vasy, Andr\'as}, title = {The resolvent for Laplace-type operators on asymptotically conic spaces}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1299-1346}, doi = {10.5802/aif.1856}, zbl = {0983.35098}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_5_1299_0} }
Hassell, Andrew; Vasy, András. The resolvent for Laplace-type operators on asymptotically conic spaces. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1299-1346. doi : 10.5802/aif.1856. http://gdmltest.u-ga.fr/item/AIF_2001__51_5_1299_0/
[1] Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics, Tome vol. 23 (1994) | MR 1275395 | Zbl 0814.35086
[2] Distorted plane waves for the 3 body Schrödinger operator, Geom. Funct. Anal., Tome 10 (2000), pp. 1-50 | Article | MR 1748915 | Zbl 0953.35122
[3] Symbolic functional calculus and N-body resolvent estimates, J. Funct. Anal., Tome 173 (2000), pp. 257-283 | Article | MR 1760615 | Zbl 0960.58025
[4] The spectral projections and the resolvent for scattering metrics, J. d'Anal. Math., Tome 79 (1999), pp. 241-298 | Article | MR 1749314 | Zbl 0981.58025
[5] Legendrian distributions on manifolds with corners (In preparation)
[6] Fourier integral operators, I, Acta Mathematica, Tome 127 (1971), pp. 79-183 | Article | MR 388463 | Zbl 0212.46601
[7] The analysis of linear partial differential operators, III, Springer (1983) | MR 781536 | Zbl 0601.35001
[8] Calculus of conormal distributions on manifolds with corners, International Mathematics Research Notices (1992) no. 3, pp. 51-61 | Article | MR 1154213 | Zbl 0754.58035
[9] The Atiyah-Patodi-Singer index theorem, A. K. Peters, Wellesley, MA (1993) | MR 1348401 | Zbl 0796.58050
[10] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Marcel Dekker (1994) | MR 1291640 | Zbl 0837.35107
[11] Lagrangian Intersection and the Cauchy problem, Comm. Pure and Appl. Math., Tome 32 (1979), pp. 483-519 | Article | MR 528633 | Zbl 0396.58006
[12] Scattering metrics and geodesic flow at infinity, Inventiones Mathematicae, Tome 124 (1996), pp. 389-436 | Article | MR 1369423 | Zbl 0855.58058
[13] Geometric scattering theory for long-range potentials and metrics, Int. Math. Res. Notices (1998), pp. 285-315 | Article | MR 1616722 | Zbl 0922.58085
[14] Distribution of resonances for asymptotically euclidean manifolds (To appear in J. Diff. Geom.) | MR 1849026 | Zbl 1030.58024