On construit pour une variété algébrique réelle (plus généralement, pour un schéma essentiellement de type fini sur un corps de caractéristique ) des complexes de chaînes algébriquement constructibles et -algébriquement constructibles, dont on étudie la fonctorialité et dont on calcule l’homologie pour les espaces affines et projectifs. Puis on montre que les cycles lagrangiens algébriquement constructibles du fibré cotangent sont exactement les cycles caractéristiques des fonctions algébriquement constructibles.
We construct for a real algebraic variety (or more generally for a scheme essentially of finite type over a field of characteristic ) complexes of algebraically and - algebraically constructible chains. We study their functoriality and compute their homologies for affine and projective spaces. Then we show that the lagrangian algebraically constructible cycles of the cotangent bundle are exactly the characteristic cycles of the algebraically constructible functions.
@article{AIF_2001__51_4_939_0, author = {Pennaneac'h, H\'el\`ene}, title = {Algebraically constructible chains}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {939-994}, doi = {10.5802/aif.1841}, mrnumber = {1849211}, zbl = {1036.14029}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_4_939_0} }
Pennaneac'h, Hélène. Algebraically constructible chains. Annales de l'Institut Fourier, Tome 51 (2001) pp. 939-994. doi : 10.5802/aif.1841. http://gdmltest.u-ga.fr/item/AIF_2001__51_4_939_0/
[B] Un critère pour reconnaître les fonctions algébriquement constructibles, J. reine angew. Math., Tome 526 (2000), pp. 61-88 | Article | MR 1778301 | Zbl 0959.14035
[BB] On the description of the reduced Witt ring, J. Alg., Tome 52 (1978), pp. 328-346 | Article | MR 506029 | Zbl 0396.10012
[BCR] Géométrie algébrique réelle, Springer, Ergebnisse der Math., 3 Folge, Tome Vol. 12 (1987) | MR 949442 | Zbl 0633.14016
[DM] On quadratic forms whose total signature is zero mod , Invent. Math., Tome 133 (1998) no. 2, pp. 243-278 | Article | MR 1632786 | Zbl 0908.11022
[G] Topological stability of smooth mappings, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Tome Vol. 552 (1976) | MR 436203 | Zbl 0377.58006
[Ha] Algebraic Geometry, Springer Verlag, Graduate Texts in Math. (1977) | MR 463157 | Zbl 0367.14001
[KnS] Einführung in die reelle Algebra, Vieweg und Sohn, Braunschweig, Vieweg Studium: Aufbaukurs Mathematik, Tome 63 (1989) | MR 1029278 | Zbl 0732.12001
[KS] Sheaves on manifolds, Springer-Verlag, Berlin (1990) | MR 1074006 | Zbl 0709.18001
[Ku] Kähler Differentials, Friedr. Vieweg and Sohn, Braunschweig, Advanced Lectures in Math. (1986) | MR 864975 | Zbl 0587.13014
[MP] Algebraically constructible functions, Ann. Scient. École Norm. Sup. (4), Tome 30 (1997), pp. 527-552 | Numdam | MR 1456244 | Zbl 0913.14018
[R] Chow groups with coefficients, Docu. Math., Tome 1 (1996), pp. 319-383 | MR 1418952 | Zbl 0864.14002
[S] Wittringhomologie (Thesis University of Regensburg (available on the web page of M. Rost), http://www.math.ohio-state.edu/~rost/papers.html)
[Sch] Purity theorems for real spectra and applications, Real analytic and algebraic geometry (Trento, 1992), of Gruyter, Berlin (1995), pp. 229-250 | Zbl 0840.14035
[SV] Characteristic cycles of constructible sheaves, Invent. Math., Tome 124 (1996), pp. 451-502 | Article | MR 1369425 | Zbl 0851.32011
[ZS] Commutative Algebra, van Nostrand, Princeton-London-Toronto (1958) | MR 90581 | Zbl 0081.26501