Dans cet article nous décrivons une généralisation à la dimension de l’ algorithme d’Euclide, qui provient de la dynamique des échanges de intervalles. Nous examinons diverses propriétés diophantiennes de cet algorithme, en particulier la qualité de l’approximation simultanée. Nous montrons qu’il vérifie un théorème de type Lagrange : l’algorithme est finalement périodique si et seulement si les paramètres sont dans la même extension quadratique de .
In this paper we describe a -dimensional generalization of the Euclidean algorithm which stems from the dynamics of -interval exchange transformations. We investigate various diophantine properties of the algorithm including the quality of simultaneous approximations. We show it verifies the following Lagrange type theorem: the algorithm is eventually periodic if and only if the parameters lie in the same quadratic extension of
@article{AIF_2001__51_4_861_0, author = {Ferenczi, S\'ebastien and Holton, Charles and Zamboni, Luca Q.}, title = {Structure of three interval exchange transformations I: an arithmetic study}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {861-901}, doi = {10.5802/aif.1839}, mrnumber = {1849209}, zbl = {1029.11036}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_4_861_0} }
Ferenczi, Sébastien; Holton, Charles; Zamboni, Luca Q. Structure of three interval exchange transformations I: an arithmetic study. Annales de l'Institut Fourier, Tome 51 (2001) pp. 861-901. doi : 10.5802/aif.1839. http://gdmltest.u-ga.fr/item/AIF_2001__51_4_861_0/
[1] The visits to zero of some deterministic random walks, Proc. London Math. Soc., Tome 44 (1982) no. 3, pp. 535-553 | Article | MR 656248 | Zbl 0489.60006
[2] A-graded algebras and continued fractions, Comm. Pure Applied Math., Tome XLII (1989), pp. 993-1000 | Article | MR 1008799 | Zbl 0692.16012
[3] Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore (in French), Bull. Soc. Math. France, Tome 116 (1988) no. 4, pp. 489-500 | Numdam | MR 1005392 | Zbl 0703.58045
[4] Discrete planes, -actions, Jacobi-Perron algorithm and substitutions (1999) (Preprint)
[5] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Tome 119 (1991) no. 2, pp. 199-215 | Numdam | MR 1116845 | Zbl 0789.28011
[6] The Jacobi-Perron algorithm; its theory and applications, Springer-Verlag, Lecture Notes in Mathematics, Tome no 207 (1971) | MR 285478 | Zbl 0213.05201
[7] Tilings and rotations: a two-dimensional generalization of Sturmian sequences, Discrete Math., Tome 223 (2000), pp. 27-53 | Article | MR 1782038 | Zbl 0970.68124
[8] An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., Tome 72 (1997), pp. 21-44 | Article | MR 1482988 | Zbl 0931.28013
[9] Multi-dimensional continued fraction algorithms, Math. Centre Tracts, Amsterdam, Tome 145 (1981) | MR 638474 | Zbl 0471.10024
[10] On simultaneous diophantine approximation in the vector space , J. Number Theory, Tome 82 (2000), pp. 12-24 | Article | MR 1755151 | Zbl 0985.11031
[11] On real quadratic number fields and simultaneous diophantine approximation, Monats. Math., Tome 128 (1999), pp. 201-209 | Article | MR 1719356 | Zbl 0971.11039
[12] Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier, Tome 50 (2000) no. 4, pp. 1265-1276 | Article | Numdam | MR 1799745 | Zbl 1004.37008
[13] Propriétés combinatoires, ergodiques et arithmétiques de la substitution de tribonacci, J. Théorie des Nombres de Bordeaux (2001) | Numdam | MR 1879664 | Zbl 1038.37010
[14] Sequences with minimal block growth, Math. Systems Theory, Tome 7 (1972) no. 2, pp. 138-153 | Article | MR 322838 | Zbl 0256.54028
[15] A family of counterexamples in ergodic theory, Israël J. Math., Tome 44 (1983) no. 2, pp. 160-188 | Article | MR 693358 | Zbl 0522.28012
[16] Structure of three-interval exchange transformations II: a combinatorial description of the trajectories (2001) (Preprint, 32pp.) | MR 1981920 | Zbl 01997290
[17] Structure of three-interval exchange transformations III: ergodic and spectral properties (2001) (Preprint, 29 pp.) | MR 2110326 | Zbl 1094.37005
[18] On periodic sequences for algebraic numbers (1999) (, http://front.math.ucdavis.edu/math.NT/9906016) | Zbl 1015.11031
[19] A characterization of real quadratic numbers by diophantine algorithms, Tokyo J. Math., Tome 14 (1991) no. 2, pp. 251-267 | Article | MR 1138165 | Zbl 0751.11034
[20] An introduction to the theory of numbers, Oxford University Press | MR 67125 | Zbl 0058.03301
[21] Letter to C.D.J. Jacobi, J. reine. angew Math., Tome 40 (1839) no. 286
[22] Über eine besondere Art der Kettenbruchentwicklung reeller Grössen, Acta Math., Tome 12 (1889), pp. 367-405 | Article | JFM 21.0188.01
[23] Approximations in ergodic theory, Usp. Math. Nauk., Tome 22 (1967) no. 5, pp. 81-106 | MR 219697 | Zbl 0172.07202
[23] Approximations in ergodic theory, Russian Math. Surveys, Tome 22 (1967) no. 5, pp. 76-102 | MR 219697 | Zbl 0172.07202
[24] Sur une représentation géométrique du développement en fraction continue ordinaire, Nouv. Ann. Math., Tome 15, pp. 321-331 | JFM 27.0177.01 | Numdam
[25] La périodicité des fractions continues multidimensionnelles, C.R. Acad. Sci. Paris, Série I, Tome 319 (1994), pp. 777-780 | MR 1300940 | Zbl 0836.11023
[26] A new class of continued fraction expansions, Acta Arith., Tome 57 (1991), pp. 1-39 | MR 1093246 | Zbl 0721.11029
[27] Sur la solution des problèmes indéterminés du second degré, Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, Tome 23 (1769)
[28] Ein Kriterium für algebraishcen Zahlen, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse, pp. 293-315
[29] Über periodische Approximationen algebraischer Zahlen, Acta Math., Tome 26, pp. 333-351 | Article | JFM 33.0216.02
[30] Symbolic dynamics, Amer. J. Math., Tome 60 (1938), pp. 815-866 | Article | JFM 64.0798.04 | MR 1507944
[31] Symbolic dynamics II: Sturmian sequences, Amer. J. Math., Tome 62 (1940), pp. 1-42 | Article | MR 745 | Zbl 0022.34003
[32] Die Lehre von den Kettenbrüchen (in German), Teubner Verlag (1929) | JFM 55.0262.09
[33] Une généralization du développement en fraction continue, Séminaire de Théorie des Nombres, Paris (1975-1977) | Numdam
[34] Échanges d'intervalles et transformations induites, Acta Arith., Tome 34 (1979), pp. 315-328 | MR 543205 | Zbl 0414.28018
[35] Nombres algébriques et substitutions, Bull. Soc. Math. France, Tome 110 (1982), pp. 147-178 | Numdam | MR 667748 | Zbl 0522.10032
[36] A generalization of Sturmian sequences; combinatorial properties and transcendence, Acta Arith., Tome 95 (2000) no. 2, pp. 167-184 | MR 1785413 | Zbl 0953.11007
[37] The metrical theory of Jacobi-Perron algorithm, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 334 (1973) | MR 345925 | Zbl 0287.10041
[38] Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications (1995), pp. 289 pp. | Zbl 0819.11027
[39] Multidimensional continued fractions, Ann. Univ. Sci. Budapest Sect. Math., Tome 13 (1970), pp. 113-140 | MR 313198 | Zbl 0214.30101
[40] Interval exchange transformations, J. Anal. Math., Tome 33 (1978), pp. 222-278 | Article | MR 516048 | Zbl 0455.28006
[41] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Tome 115 (1982) no. 1, pp. 201-242 | Article | MR 644019 | Zbl 0486.28014
[42] The metric theory of interval exchange transformations I, II, III, Amer. J. Math., Tome 106 (1984), pp. 1331-1421 | Article | MR 765582 | Zbl 0631.28006
[43] Frequencies of factors in Arnoux-Rauzy sequences, Acta Arith., Tome 96 (2001) no. 3, pp. 261-278 | Article | MR 1814281 | Zbl 0973.11030
[44] Une généralisation du théorème de Lagrange sur le développement en fraction continue, C.R. Acad. Sci. Paris, Série I, Tome 327 (1998), pp. 527-530 | MR 1647296 | Zbl 1039.11500