L p -L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III
[Estimations L p -L q de fonctions de l’opérateur de Laplace-Beltrami pour les espaces symétriques non compacts. III]
Cowling, Michael ; Giulini, Saverio ; Meda, Stefano
Annales de l'Institut Fourier, Tome 51 (2001), p. 1047-1069 / Harvested from Numdam

Soit X un espace symétrique du type noncompact, soit - son opérateur Laplace- -Beltrami, et soit [b,) le spectre de (vu comme opérateur sur L 2 (X)). Si τ et Re τ0, notons 𝒫 τ l’opérateur exp (-τ(-b) 1/2 ) sur L 2 (X). On démontre des estimations de la norme de 𝒫 τ de L p dans L q pour chaque τ, qui sont optimales si |τ|T ou | arg τ|φ<π/2.

Let X be a symmetric space of the noncompact type, with Laplace–Beltrami operator -, and let [b,) be the L 2 (X)-spectrum of . For τ in such that Re τ0, let 𝒫 τ be the operator on L 2 (X) defined formally as exp (-τ(-b) 1/2 ). In this paper, we obtain L p -L q operator norm estimates for 𝒫 τ for all τ, and show that these are optimal when τ is small and when | arg τ| is bounded below π/2.

Publié le : 2001-01-01
DOI : https://doi.org/10.5802/aif.1844
Classification:  22E46,  22E30,  58J35,  58J45
Mots clés: Espace symétrique, équation des ondes, estimations L p -L q
@article{AIF_2001__51_4_1047_0,
     author = {Cowling, Michael and Giulini, Saverio and Meda, Stefano},
     title = {$L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III},
     journal = {Annales de l'Institut Fourier},
     volume = {51},
     year = {2001},
     pages = {1047-1069},
     doi = {10.5802/aif.1844},
     mrnumber = {1849214},
     zbl = {0980.43007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2001__51_4_1047_0}
}
Cowling, Michael; Giulini, Saverio; Meda, Stefano. $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1047-1069. doi : 10.5802/aif.1844. http://gdmltest.u-ga.fr/item/AIF_2001__51_4_1047_0/

[A1] J.-Ph. Anker Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Tome 65 (1992), pp. 257-297 | MR 1150587 | Zbl 0764.43005

[A2] J.-Ph. Anker L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. Math., Tome 132 (1990), pp. 597-628 | Article | MR 1078270 | Zbl 0741.43009

[AJ] J.-Ph. Anker; L. Ji Heat kernel and Green function estimates on noncompact symmetric spaces I, II (Preprint) | Zbl 0942.43005

[B] P.H. Bérard On the wave equation on a compact Riemannian manifold without conjugate point, Math. Z., Tome 155 (1977), pp. 249-276 | Article | MR 455055 | Zbl 0341.35052

[CGM1] M.G. Cowling; S. Giulini; S. Meda Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. I, Duke Math. J., Tome 72 (1993), pp. 109-150 | Article | MR 1242882 | Zbl 0807.43002

[CGM2] M.G. Cowling; S. Giulini; S. Meda Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. II, J. Lie Th., Tome 5 (1995), pp. 1-14 | MR 1362006 | Zbl 0835.43011

[CGT] J. Cheeger; M. Gromov; M. Taylor Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Tome 17 (1982), pp. 15-53 | MR 658471 | Zbl 0493.53035

[H1] S. Helgason Groups and Geometric Analysis, Academic Press, New York (1984) | MR 754767 | Zbl 0543.58001

[H2] S. Helgason Wave equations on homogeneous spaces, Lie Group Representations III, Springer-Verlag (Lecture Notes in Math.) Tome 1077 (1984), pp. 254-287 | Zbl 0547.58037

[Hö1] L. Hörmander Estimates for translation invariant operators in L p spaces, Acta Math., Tome 104 (1960), pp. 93-140 | Article | MR 121655 | Zbl 0093.11402

[Hö2] L. Hörmander The Analysis of Linear Partial Differential Operators. III., Springer-Verlag, Berlin Heidelberg New York, Grundlehren der mathematischen Wissenschaften, Tome 274 (1985) | MR 781536 | Zbl 0601.35001

[T] M. Taylor L p estimates on functions of the Laplace operator, Duke Math. J., Tome 58 (1989), pp. 773-793 | Article | MR 1016445 | Zbl 0691.58043