Nous étudions la compatibilité entre l'ensemble des éléments pleinement commutatifs d'un groupe de Coxeter et les divers types de cellules de Kazhdan-Lusztig, en utilisant une base canonique pour une version généralisée de l'algèbre de Temperley-Lieb.
We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.
@article{AIF_2001__51_4_1025_0, author = {Green, Richard M. and Losonczy, Jozsef}, title = {Fully commutative Kazhdan-Lusztig cells}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {1025-1045}, doi = {10.5802/aif.1843}, mrnumber = {1849213}, zbl = {1008.20036}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_4_1025_0} }
Green, Richard M.; Losonczy, Jozsef. Fully commutative Kazhdan-Lusztig cells. Annales de l'Institut Fourier, Tome 51 (2001) pp. 1025-1045. doi : 10.5802/aif.1843. http://gdmltest.u-ga.fr/item/AIF_2001__51_4_1025_0/
[1] Coxeter Version 1.01, Université de Lyon, France (1991)
[2] A Hecke algebra quotient and properties of commutative elements of a Weyl group (1995) (Ph.D. thesis, M.I.T.)
[3] Monomials and Temperley--Lieb algebras, J. Algebra, Tome 190 (1997), pp. 498-517 | Article | MR 1441960 | Zbl 0899.20018
[4] Nilpotent orbits and commutative elements, J. Algebra, Tome 196 (1997), pp. 490-498 | Article | MR 1475121 | Zbl 0915.20019
[5] On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Math., Tome 75 (1990), pp. 135-169 | Numdam | MR 1065203 | Zbl 0737.17003
[6] On the classification of primitive ideals for complex classical Lie algebras, II, Compositio Math., Tome 81 (1992), pp. 307-336 | Numdam | MR 1149172 | Zbl 0762.17007
[7] On the classification of primitive ideals for complex classical Lie algebras, III, Compositio Math., Tome 88 (1993), pp. 187-234 | Numdam | MR 1237920 | Zbl 0798.17007
[8] Modular representations of Hecke algebras and related algebras (1995) (Ph.D. thesis, University of Sydney)
[9] Generalized Temperley--Lieb algebras and decorated tangles, J. Knot Theory Ramifications, Tome 7 (1998), pp. 155-171 | Article | MR 1618912 | Zbl 0926.20005
[10] Decorated tangles and canonical bases (Preprint) | MR 1872116 | Zbl 0998.20007
[11] Canonical bases for Hecke algebra quotients, Math. Res. Lett., Tome 6 (1999), pp. 213-222 | MR 1689211 | Zbl 0961.20007
[12] A projection property for Kazhdan--Lusztig bases, Internat. Math. Res. Notices, Tome 1 (2000), pp. 23-34 | Article | MR 1741607 | Zbl 0961.20008
[13] Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge (1990) | MR 1066460 | Zbl 0768.20016
[14] Representations of Coxeter groups and Hecke algebras, Invent. Math., Tome 53 (1979), pp. 165-184 | Article | MR 560412 | Zbl 0499.20035
[15] The Kazhdan--Lusztig basis and the Temperley--Lieb quotient in type D, J. Algebra, Tome 233 (2000), pp. 1-15 | Article | MR 1793587 | Zbl 0969.20003
[16] Cells in affine Weyl groups, II, J. Algebra, Tome 109 (1987), pp. 536-548 | Article | MR 902967 | Zbl 0625.20032
[17] On the fully commutative elements of Coxeter groups, J. Algebraic Combin., Tome 5 (1996), pp. 353-385 | Article | MR 1406459 | Zbl 0864.20025