En utilisant une méthode dépendante du temps, nous démontrons la complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats. On introduit l'observable de vitesse asymptotique et on décrit son spectre (sous des hypothèses plus faibles que pour la complétude asymptotique). Les méthodes utilisées sont inspirées par celles de l'analyse du problème à deux corps en mécanique quantique.
Using a time-dependent method we show asymptotic completeness for the wave equation in a class of stationary and asymptotically flat space-times. We introduce the asymptotic velocity observable and we describe its spectrum (under hypotheses weaker than for asymptotic completeness). The methods used are inspired by those of the analysis of the two-body problem in quantum mechanics.
@article{AIF_2001__51_3_779_0, author = {H\"afner, Dietrich}, title = {Compl\'etude asymptotique pour l'\'equation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {779-833}, doi = {10.5802/aif.1837}, mrnumber = {1838466}, zbl = {0981.35031}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_3_779_0} }
Häfner, Dietrich. Complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats. Annales de l'Institut Fourier, Tome 51 (2001) pp. 779-833. doi : 10.5802/aif.1837. http://gdmltest.u-ga.fr/item/AIF_2001__51_3_779_0/
[1] -groups, commutator methods and spectral theory of -body hamiltonians, Birkhäuser Verlag (1996) | Zbl 0962.47500
[2] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pur. Appl. (9), Tome 36 (1957), pp. 235-249 | MR 92067 | Zbl 0084.30402
[3] Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric, Ann. I.H.P., Phys. Théorique, Tome 61 (1994), pp. 411-441 | Numdam | MR 1311537 | Zbl 0809.35141
[4] Scattering theory for the wave equation on non-compact manifolds, Rev. Math. Phys., Tome 4 (1992), pp. 575-618 | Article | MR 1197551 | Zbl 0778.58064
[5] Scattering theory of classical and quantum N-particle systems, Springer (1997) | MR 1459161 | Zbl 0899.47007
[6] Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav., Tome 17 (1985), pp. 353-369 | Article | MR 788801 | Zbl 0618.35088
[7] Spectral analysis of second-order elliptic operators on noncompact manifolds, Duke Math. J., Tome 58 (1989), pp. 103-129 | MR 1016416 | Zbl 0687.35060
[8] On the virial theorem in quantum mechanics, Comm. Math. Phys., Tome 208 (1999), pp. 275-281 | Article | MR 1729087 | Zbl 0961.81009
[9] Scattering theory for the perturbations of periodic Schrödinger operators, J. Math. Kyoto Univ., Tome 38 (1998), pp. 595-634 | MR 1669979 | Zbl 0934.35111
[10] The domain of dependence, J. Math. Phys., Tome 11 (1970), pp. 437-449 | Article | MR 270697 | Zbl 0189.27602
[11] Symbolic functional calculus of N body resolvent estimates, J. Funct. Anal., Tome 173 (2000), pp. 257-283 | Article | MR 1760615 | Zbl 0960.58025
[12] The analysis of linear partial differential operators 3, Springer (1985) | Zbl 0601.35001
[13] On the asymptotic behavior of eigenfunctions of second-order elliptic operators, J. Math. Kyoto Univ., Tome 11 (1971), pp. 425-448 | MR 289967 | Zbl 0233.35021
[14] Linear spin-zero quantum fields in external gravitational and scalar fields, Comm. Math. Phys., Tome 62 (1978), pp. 55-70 | Article | MR 506366
[15] Absence of singular continous spectrum for certain self-adjoint operators, Comm. Math. Phys., Tome 78 (1981), pp. 391-408 | Article | MR 603501 | Zbl 0489.47010
[16] Methods of modern mathematical physics 2 : Fourier Analysis, self adjointness, Academic Press, New York, San Francisco, London (1975) | Zbl 0308.47002