Nous décrivons des représentations de certaines algèbres superconformes dans le complexe de Weil semi-infini de l'algèbre des lacets d'une algèbre de Lie complexe de dimension finie et dans la cohomologie semi-infinie. Nous démontrons que dans le cas où l'algèbre de Lie est munie d'une forme bilinéaire symétrique non dégénérée invariante, la cohomologie semi-infinie relative de l'algèbre des lacets admet une structure, qui est l'analogue de la structure classique de la cohomologie de de Rham des variétés kählériennes.
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.
@article{AIF_2001__51_3_745_0, author = {Poletaeva, Elena}, title = {Semi-infinite cohomology and superconformal algebras}, journal = {Annales de l'Institut Fourier}, volume = {51}, year = {2001}, pages = {745-768}, doi = {10.5802/aif.1835}, mrnumber = {1838464}, zbl = {1067.17012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2001__51_3_745_0} }
Poletaeva, Elena. Semi-infinite cohomology and superconformal algebras. Annales de l'Institut Fourier, Tome 51 (2001) pp. 745-768. doi : 10.5802/aif.1835. http://gdmltest.u-ga.fr/item/AIF_2001__51_3_745_0/
[Ad] Dual strings with colour symmetry, Nucl. Phys., Tome B111 (1976), pp. 77-110 | Article
[Ak] Some cohomology operators in field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993), World Sci. Publ., River Edge, NJ (1994), pp. 1-19 | Zbl 1036.81514
[Fe] Private communication
[FF] Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys., Tome 137 (1991), pp. 617-639 | Article | MR 1105434 | Zbl 0726.17035
[FF] Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys., Tome 147 (1992), p. 647-648 | Article | MR 1175498 | Zbl 0753.17033
[FGZ] Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A., Tome 83 (1986), pp. 8442-8446 | Article | MR 865483 | Zbl 0607.17007
[FST] Equivalence between chain categories of representations of affine and superconformal algebras, J. Math. Phys., Tome 39 (1998) no. 7, pp. 3865-3905 | Article | MR 1630542 | Zbl 0935.17011
[Fu] Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York and London (1986) | MR 874337 | Zbl 0667.17005
[G] Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys., Tome 163 (1994) no. 3, pp. 473-489 | Article | MR 1284793 | Zbl 0806.53073
[GH] Principles of algebraic geometry, Wiley-Interscience Publ., New York (1978) | MR 507725 | Zbl 0408.14001
[KL] On Classification of Superconformal Algebras, Strings-88, World Scientific (1989), pp. 77-106 | Zbl 0931.17018
[P1] Semi-infinite Weil complex and superconformal algebra I (Preprint MPI 97-78)
[P1] Semi-infinite Weil complex and superconformal algebras II (Preprint MPI 97-79)
[P2] Superconformal algebras and Lie superalgebras of the Hodge theory (Preprint MPI, p. 99-136) | MR 1976379 | Zbl 1044.17017
[P3] Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I, Tome t. 326 (1998), pp. 533-538 | MR 1649528 | Zbl 0923.17022